标签:并且 论文 简单 共同点 链接 是什么 tail read push
LCT是一种强力的树上数据结构,支持以下操作:
LCT是对树的实链剖分,即把所有边划分为实边和虚边
类似于重链剖分,每个点连向子节点中的实链至多只会有一条,把这条实边连向的儿子叫做实儿子
把一些实边连接的点构成的链叫做实链,容易发现实链之间没有共同点
需要注意的是一个不在实边上的点(一些叶节点)也视为一条没有实边的实链
于是实链之间一定是用虚边链接的
要涉及动态删连边操作,于是使用splay来维护一条实链,splay是LCT的辅助树
此处splay的深度按中序遍历严格递增
由于用splay维护,LCT的实边是动态的,可以改变
? access(x):让x到根节点的所有边均为实边,并且x没有实儿子
这个推荐flash_hu的博客,简单易懂
稍微说一下,每次操作先把当前要连的点splay到当前splay的根,由于splay中深度按中序遍历递增,此时根的右儿子一定是之前连的实链,需要去掉
于是把之前的点连到当前根的右儿子就行了
注意此时一些\(fa,son,isroot\)之类的信息改变了,需要\(push\)_\(up\)
void access(int x){
for(int y=0;x;y=x,x=fa[x]){ //y是之前的根,x是当前需要连的点
splay(x); ch[x][1]=y;
push_up(x);
}
}
makeroot
换根操作
access(x)之后x是深度最大的点
所以splay(x)之后,x在splay中一定没有右子树,这个时候翻转整个splay,所有点的深度就都倒过来了,x成为深度最小的点,即为根节点
void pushr(int x){
swap(ch[x][0],ch[x][1]);
r[x]^=1;
}
void makeroot(int x){
access(x); splay(x);
pushr(x);
}
findroot
找所在树的树根,可以用来判断两点之间的连通性(两点所在树相同则有唯一相同根
int findroot(int x){
access(x);splay(x);
while(c[x][0]) push_down(x),x=ch[x][0];//寻找深度最小的点,此处push_down是为了x到跟的标记放完,好判连通性
splay(x);//多多splay有益健康
return 0;
}
split
把一条路径拉成一个splay
void spilt(int x,int y){
makeroot(x);access(y);
splay(y);
}
link
连一条边,保证连完还是一棵树
不保证合法:
int link(int x,int y){
makeroot(x);
if(findroot(y)==x) return 0;
fa[x]=y; //把x作为y的儿子
return 1;
}
保证合法:
void link(int x,int y){
makeroot(x);
fa[x]=y;
}
此处连的边是虚边(感受到实链剖分的方便了罢
cut
断边
保证存在:
void cut(int x,int y){
split(x,y);
fa[x]=ch[y][0]=0;
}
不存在此边的时候是什么情况呢?
先把x给\(makeroot\)到根
x和y不连通 (\(findroot\))
在同一splay中而没有直接连边 (\(f[y]==x\)且\(!c[y][0]\))
(考虑其他的点在哪里,在findroot之后x到了根节点,如果x和y之间有点,只能是在y到根的路径上或者y的左儿子上)
int cut(int x,int y){
makeroot(x);
if(findroot(y)!=x||fa[y]!=x||ch[y][0]) return 0;
fa[y]=ch[x][1]=0;
push_up(x);
return 1;
}
nroot
naiive的操作,判断此点是否不是当前splay的根节点
int nroot(int x){
return (ch[fa[x]][1]==x||ch[fa[x]][0]==x);
}
splay 的特殊性
此处splay的标记一定要从上往下放,也就是先开个栈把标记放完再旋转
#include<bits/stdc++.h>
#define R register int
#define I inline void
#define G if(++ip==ie)if(fread(ip=buf,1,SZ,stdin))
#define lc c[x][0]
#define rc c[x][1]
using namespace std;
const int SZ=1<<19,N=3e5+9;
char buf[SZ],*ie=buf+SZ,*ip=ie-1;
inline int in(){
G;while(*ip<'-')G;
R x=*ip&15;G;
while(*ip>'-'){x*=10;x+=*ip&15;G;}
return x;
}
int f[N],c[N][2],v[N],s[N],st[N];
bool r[N];
inline bool nroot(R x){//判断节点是否为一个Splay的根(与普通Splay的区别1)
return c[f[x]][0]==x||c[f[x]][1]==x;
}//原理很简单,如果连的是轻边,他的父亲的儿子里没有它
I pushup(R x){//上传信息
s[x]=s[lc]^s[rc]^v[x];
}
I pushr(R x){R t=lc;lc=rc;rc=t;r[x]^=1;}//翻转操作
I pushdown(R x){//判断并释放懒标记
if(r[x]){
if(lc)pushr(lc);
if(rc)pushr(rc);
r[x]=0;
}
}
I rotate(R x){//一次旋转
R y=f[x],z=f[y],k=c[y][1]==x,w=c[x][!k];
if(nroot(y))c[z][c[z][1]==y]=x;c[x][!k]=y;c[y][k]=w;//额外注意if(nroot(y))语句,此处不判断会引起致命错误(与普通Splay的区别2)
if(w)f[w]=y;f[y]=x;f[x]=z;
pushup(y);
}
I splay(R x){//只传了一个参数,因为所有操作的目标都是该Splay的根(与普通Splay的区别3)
R y=x,z=0;
st[++z]=y;//st为栈,暂存当前点到根的整条路径,pushdown时一定要从上往下放标记(与普通Splay的区别4)
while(nroot(y))st[++z]=y=f[y];
while(z)pushdown(st[z--]);
while(nroot(x)){
y=f[x];z=f[y];
if(nroot(y))
rotate((c[y][0]==x)^(c[z][0]==y)?x:y);
rotate(x);
}
pushup(x);
}
/*当然了,其实利用函数堆栈也很方便,代替上面的手工栈,就像这样
I pushall(R x){
if(nroot(x))pushall(f[x]);
pushdown(x);
}*/
I access(R x){//访问
for(R y=0;x;x=f[y=x])
splay(x),rc=y,pushup(x);
}
I makeroot(R x){//换根
access(x);splay(x);
pushr(x);
}
int findroot(R x){//找根(在真实的树中的)
access(x);splay(x);
while(lc)pushdown(x),x=lc;
splay(x);
return x;
}
I split(R x,R y){//提取路径
makeroot(x);
access(y);splay(y);
}
I link(R x,R y){//连边
makeroot(x);
if(findroot(y)!=x)f[x]=y;
}
I cut(R x,R y){//断边
makeroot(x);
if(findroot(y)==x&&f[y]==x&&!c[y][0]){
f[y]=c[x][1]=0;
pushup(x);
}
}
int main()
{
R n=in(),m=in();
for(R i=1;i<=n;++i)v[i]=in();
while(m--){
R type=in(),x=in(),y=in();
switch(type){
case 0:split(x,y);printf("%d\n",s[y]);break;
case 1:link(x,y);break;
case 2:cut(x,y);break;
case 3:splay(x);v[x]=y;//先把x转上去再改,不然会影响Splay信息的正确性
}
}
return 0;
}
之后可能会补自己做的LCT题(咕
在创作本文的过程中,参考了以下文章:
[flash_hu大佬的博客][https://www.cnblogs.com/flashhu/p/8324551.html]
[NOI级别的超强数据结构——Link-cut-tree(动态树)学习小记][https://blog.csdn.net/qq_36551189/article/details/79152612]
成都七中的LCT课件(有一点吧
Yang Zhe 2007年的论文
标签:并且 论文 简单 共同点 链接 是什么 tail read push
原文地址:https://www.cnblogs.com/lcyfrog/p/11391899.html