码迷,mamicode.com
首页 > 其他好文 > 详细

Zookeeper高级

时间:2019-08-22 00:53:36      阅读:91      评论:0      收藏:0      [点我收藏+]

标签:ase   反馈   模式   模型   state   靠谱   ror   执行   无法   

1.1. 一致性协议概述

前面已经讨论过,在分布式环境下,有很多不确定性因素,故障随时都回发生,也讲了CAP理论,BASE理论

我们希望达到,在分布式环境下能搭建一个高可用的,且数据高一致性的服务,目标是这样,但CAP理论告诉我们要达到这样的理想环境是不可能的。这三者最多完全满足2个。

在这个前提下,P(分区容错性)是必然要满足的,因为毕竟是分布式,不能把所有的应用全放到一个服务器里面,这样服务器是吃不消的,而且也存在单点故障问题。

所以,只能从一致性和可用性中找平衡。

 

怎么个平衡法?在这种环境下出现了BASE理论:

即使无法做到强一致性,但分布式系统可以根据自己的业务特点,采用适当的方式来使系统达到最终的一致性;

 

BASEBasically Avaliable  基本可用、Soft state 软状态、Eventually consistent 最终一致性组成,一句话概括就是:平时系统要求是基本可用,除开成功失败,运行有可容忍的延迟状态,但是,无论如何经过一段时间的延迟后系统最终必须达成数据是一致的。

 

 

其实可能发现不管是CAP理论,还是BASE理论,他们都是理论,这些理论是需要算法来实现的,今天讲的2PC3PCPaxos算法,ZAB算法就是干这事情。

 

所以今天要讲的这些的前提一定是分布式,解决的问题全部都是在分布式环境下,怎么让系统尽可能的高可用,而且数据能最终能达到一致。

1.1.1. 两阶段提交 two-phase commit (2PC)

首先来看下2PC,翻译过来叫两阶段提交算法,它本身是一致强一致性算法,所以很适合用作数据库的分布式事务。其实数据库的经常用到的TCC本身就是一种2PC.

 

回想下数据库的事务,数据库不管是MySQL还是MSSql,本身都提供的很完善的事务支持。

 

MySQL后面学分表分库的时候会讲到在innodb存储引擎,对数据库的修改都会写到undoredo中,不只是数据库,很多需要事务支持的都会用到这个思路。

 

对一条数据的修改操作首先写undo日志,记录的数据原来的样子,接下来执行事务修改操作,把数据写到redo日志里面,万一捅娄子,事务失败了,可从undo里面回复数据。

 

不只是数据库,在很多企业里面,比如华为等提交数据库修改都回要求这样,你要新增一个字段,首先要把修改数据库的字段SQL提交给DBAredo),这不够,还需要把删除你提交字段,把数据还原成你修改之前的语句也一并提交者叫(undo

 

数据库通过undoredo能保证数据的强一致性,要解决分布式事务的前提就是当个节点是支持事务的。

 

这在个前提下,2pc借鉴这失效,首先把整个分布式事务分两节点,首先第一阶段叫准备节点,事务的请求都发送给一个个的资源,这里的资源可以是数据库,也可以是其他支持事务的框架,他们会分别执行自己的事务,写日志到undoredo,但是不提交事务。

 

当事务管理器收到了所以资源的反馈,事务都执行没报错后,事务管理器再发送commit指令让资源把事务提交,一旦发现任何一个资源在准备阶段没有执行成功,事务管理器会发送rollback,让所有的资源都回滚。这就是2pc,非常非常简单。

 技术图片

 

说他是强一致性的是他需要保证任何一个资源都成功,整个分布式事务才成功。

 

 

1.1.1.1. 优点:

优点:原理简单,实现方便

1.1.1.2. 缺点:

缺点:同步阻塞,单点问题,数据不一致,容错性不好

 

1.1.1.2.1. 同步阻塞

在二阶段提交的过程中,所有的节点都在等待其他节点的响应,无法进行其他操作。这种同步阻塞极大的限制了分布式系统的性能。

1.1.1.2.2. 单点问题

协调者在整个二阶段提交过程中很重要,如果协调者在提交阶段出现问题,那么整个流程将无法运转。更重要的是,其他参与者将会处于一直锁定事务资源的状态中,而无法继续完成事务操作。

1.1.1.2.3. 数据不一致

假设当协调者向所有的参与者发送commit请求之后,发生了局部网络异常,或者是协调者在尚未发送完所有 commit请求之前自身发生了崩溃,导致最终只有部分参与者收到了commit请求。这将导致严重的数据不一致问题。

1.1.1.2.4. 容错性不好

二阶段提交协议没有设计较为完善的容错机制,任意一个节点是失败都会导致整个事务的失败。

1.1.2. 三阶段提交 three-phase commit (3PC)

由于二阶段提交存在着诸如同步阻塞、单点问题,所以,研究者们在二阶段提交的基础上做了改进,提出了三阶段提交。

 技术图片

 

 

1.1.2.1. 第一阶段canCommit

确认所有的资源是否都是健康、在线的,以约女孩举例,你会打个电话问下她是不是在家,而且可以约个会。

 

如果女孩有空,你在去约她。

 

就因为有了这一阶段,大大的减少了2段提交的阻塞时间,在2段提交,如果有3个数据库,恰恰第三个数据库出现问题,其他两个都会执行耗费时间的事务操作,到第三个却发现连接不上。3段优化了这种情况

1.1.2.2. 第二阶段PreCommit

如果所有服务都ok,可以接收事务请求,这一阶段就可以执行事务了,这时候也是每个资源都回写redoundo日志,事务执行成功,返回ackyes,否则返回no

 

1.1.2.3. 第三阶段doCommit

这阶段和前面说的2阶段提交大同小异,这个时候协调者发现所有提交者事务提交者事务都正常执行后,给所有资源发送commit指令。

 

和二阶段提交有所不同的是,他要求所有事务在协调者出现问题,没给资源发送commit指令的时候,三阶段提交算法要求资源在一段时间超时后回默认提交做commit操作。

 

这样的要求就减少了前面说的单点故障,万一事务管理器出现问题,事务也回提交。

 

但回顾整个过程,不管是2pc,还是3pc,同步阻塞,单点故障,容错机制不完善这些问题都没本质上得到解决,尤其是前面说得数据一致性问题,反而更糟糕了。

 

所有数据库的分布式事务一般都是二阶段提交,而者三阶段的思想更多的被借鉴扩散成其他的算法。

 

1.1.3. Paxos算法

 技术图片

这个算法还是有点难度的,本身这算法的提出者莱斯利·兰伯特在前面几篇论文中都不是以严谨的数学公式进行的。

 

其实这个paxos算法也分成两阶段。首先这个图有2个角色,提议者与接收者

 

1.1.3.1. 第一阶段

提议者对接收者吼了一嗓子,我有个事情要告诉你们,当然这里接受者不只一个,它也是个分布式集群

 

相当于星期一开早会,可耻的领导吼了句:“要开会了啊,我要公布一个编号为001的提案,收到请回复”。

 

这个时候领导就会等着,等员工回复1“好的”,如果回复的数目超过一半,就会进行下一步。

 

如果由于某些原因(接收者死机,网络问题,本身业务问题),导通过的协议未超过一半,

 

这个时候的领导又会再吼一嗓子,当然气势没那凶残:“好了,怕了你们了,我要公布一个新的编号未002的提案,收到请回复1”【就其实和老师讲课很像,老师经常问听懂了吗?听懂的回1,没懂的回2,只有回复1的占了大多数,才能讲下个知识点】

 

1.1.3.2. 第二阶段

接下来到第二阶段,领导苦口婆心的把你们叫来开会了,今天编号002提案的内容是:“由于项目紧张,今天加班到12点,同意的请举手”这个时候如果绝大多少的接收者都同意,那么好,议案就这么决定了,如果员工反对或者直接夺门而去,那么领导又只能从第一个阶段开始:“大哥,大姐们,我有个新的提案003,快回会议室吧。。”

 

 

1.1.3.3. 详细说明:

【注意:不懂没事,记住上面那简单情况就好,面试足够】

上面那个故事描绘的是个苦逼的领导和凶神恶煞的员工之间的斗争,通过这个故事你们起码要懂paxos协议的流程是什么样的(paxos的核心就是少数服从多数)。

 

上面的故事有两个问题:

苦逼的领导(单点问题):有这一帮凶残的下属,这领导要不可能被气死,要不也会辞职,这是单点问题。

凶神恶煞的下属(一致性问题):如果员工一种都拒绝,故意和领导抬杆,最终要产生一个一致性的解决方案是不可能的。

 

所以paxos协议肯定不会只有一个提议者,作为下属的员工也不会那么强势

协议要求:如果接收者没有收到过提案编号,他必须接受第一个提案编号

          如果接收者没有收到过其他协议,他必须接受第一个协议。

 

举一个例子:

2Proposer(老板,老板之间是竞争关系)3Acceptor(政府官员)

 

1.1.3.3.1. 阶段一

1.现在需要对一项议题来进行paxos过程,议题是“A项目我要中标!”,这里的“我”指每个带着他的秘书ProposerClient老板。

2.Proposer当然听老板的话了,赶紧带着议题和现金去找Acceptor政府官员。

3.作为政府官员,当然想谁给的钱多就把项目给谁。

4.Proposer-1小姐带着现金同时找到了Acceptor-1~Acceptor-3官员,12号官员分别收取了10比特币,找到第3号官员时,没想到遭到了3号官员的鄙视,3号官员告诉她,Proposer-2给了11比特币。不过没关系,Proposer-1已经得到了1,2两个官员的认可,形成了多数派(如果没有形成多数派,Proposer-1会去银行提款在来找官员们给每人20比特币,这个过程一直重复每次+10比特币,直到多数派的形成),满意的找老板复命去了,但是此时Proposer-2保镖找到了1,2号官员,分别给了他们11比特币,1,2号官员的态度立刻转变,都说Proposer-2的老板懂事,这下子Proposer-2放心了,搞定了3个官员,找老板复命去了,当然这个过程是第一阶段提交,只是官员们初步接受贿赂而已。故事中的比特币是编号,议题是value

 

这个过程保证了在某一时刻,某一个proposer的议题会形成一个多数派进行初步支持

 

1.1.3.3.2. 阶段二

5. 现在进入第二阶段提交,现在proposer-1小姐使用分身术(多线程并发)分了3个自己分别去找3位官员,最先找到了1号官员签合同,遭到了1号官员的鄙视,1号官员告诉他proposer-2先生给了他11比特币,因为上一条规则的性质proposer-1小姐知道proposer-2第一阶段在她之后又形成了多数派(至少有2位官员的赃款被更新了);此时她赶紧去提款准备重新贿赂这3个官员(重新进入第一阶段),每人20比特币。刚给1号官员20比特币, 1号官员很高兴初步接受了议题,还没来得及见到2,3号官员的时候

 

这时proposer-2先生也使用分身术分别找3位官员(注意这里是proposer-2的第二阶段),被第1号官员拒绝了告诉他收到了20比特币,第2,3号官员顺利签了合同,这时23号官员记录client-2老板用了11比特币中标,因为形成了多数派,所以最终接受了Client2老板中标这个议题,对于proposer-2先生已经出色的完成了工作;

 

这时proposer-1小姐找到了2号官员,官员告诉她合同已经签了,将合同给她看,proposer-1小姐是一个没有什么职业操守的聪明人,觉得跟Client1老板混没什么前途,所以将自己的议题修改为“Client2老板中标”,并且给了2号官员20比特币,这样形成了一个多数派。顺利的再次进入第二阶段。由于此时没有人竞争了,顺利的找3位官员签合同,3位官员看到议题与上次一次的合同是一致的,所以最终接受了,形成了多数派,proposer-1小姐跳槽到Client2老板的公司去了。

 

总结:Paxos过程结束了,这样,一致性得到了保证,算法运行到最后所有的proposer都投“client2中标所有的acceptor都接受这个议题,也就是说在最初的第二阶段,议题是先入为主的,谁先占了先机,后面的proposer在第一阶段就会学习到这个议题而修改自己本身的议题,因为这样没职业操守,才能让一致性得到保证,这就是paxos算法的一个过程。原来paxos算法里的角色都是这样的不靠谱,不过没关系,结果靠谱就可以了。该算法就是为了追求结果的一致性。

 

 

1.2. ZK集群解析

1.2.1. Zookeeper集群特点

 技术图片

 

前面一种研究的单节点,现在来研究下zk集群,首先来看下zk集群的特点。

l 顺序一致性
客户端的更新顺序与它们被发送的顺序相一致。

l 原子性
更新操作要么成功要么失败,没有第三种结果。

l 单一视图
无论客户端连接到哪一个服务器,客户端将看到相同的 ZooKeeper 视图。

l 可靠性
一旦一个更新操作被应用,那么在客户端再次更新它之前,它的值将不会改变。

l 实时性
连接上一个服务端数据修改,所以其他的服务端都会实时的跟新,不算完全的实时,有一点延时的

l 角色轮换避免单点故障
leader出现问题的时候,会选举从follower中选举一个新的leader

 

1.2.2. 集群中的角色

l Leader  集群工作机制中的核心

事务请求的唯一调度和处理者,保证集群事务处理的顺序性

集群内部个服务器的调度者(管理follower,数据同步)

l Follower  集群工作机制中的跟随者

    处理非事务请求,转发事务请求给Leader

参与事务请求proposal投票

参与leader选举投票

l Observer 观察者  

3.30以上版本提供,和follower功能相同,但不参与任何形式投票

处理非事务请求,转发事务请求给Leader

提高集群非事务处理能力

1.2.3. Zookeeper集群配置

1.安装jdk运行jdk环境

 上传jdk1.8安装包

 

2.安装jdk1.8环境变量

vi /etc/profile

 

export JAVA_HOME=/usr/local/jdk1.8.0_181

export ZOOKEEPER_HOME=/usr/local/zookeeper

export CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar

export PATH=$JAVA_HOME/bin:$ZOOKEEPER_HOME/bin:$PATH

 

 

 

刷新profile文件

source /etc/profile

 

 

关闭防火墙

 

3.下载zookeeper安装包

wget https://mirrors.tuna.tsinghua.edu.cn/apache/zookeeper/zookeeper-3.4.10/zookeeper-3.4.10.tar.gz

 

4.解压Zookeeper安装包

tar -zxvf zookeeper-3.4.10.tar.gz

 

5.修改Zookeeper文件夹名称

重命名: mv zookeeper-3.4.10 zookeeper

 

  1. 修改zoo_sample.cfg文件

cd /usr/local/zookeeper/conf
mv zoo_sample.cfg zoo.cfg
修改conf: vi zoo.cfg 修改两处
(1) dataDir=/usr/local/zookeeper/data(注意同时在zookeeper创建data目录)
(2)最后面添加
server.0=192.168.212.154:2888:3888
server.1=192.168.212.156:2888:3888
server.2=192.168.212.157:2888:3888

 

7.创建服务器标识
服务器标识配置:
创建文件夹: mkdir data
创建文件myid并填写内容为0: vi
myid (内容为服务器标识 : 0)

8.复制zookeeper

进行复制zookeeper目录到node1node2
还有/etc/profile文件
node1 node2中的myid文件里的值修改为1和2
路径(vi /usr/local/zookeeper/data/myid)

9启动zookeeper
启动zookeeper:
路径: /usr/local/zookeeper/bin
执行: zkServer.sh start
(注意这里3台机器都要进行启动)
状态: zkServer.sh
status(在三个节点上检验zk的mode,一个leader和俩个follower)

 

scp -r  /soft  root@zk2:/

scp -r  /soft  root@zk3:/

 

 

1.2.4. Zookeeper集群一致性协议ZAB解析

1.2.4.1. 总览

懂了paxos算法,其实zab就很好理解了。很多论文和资料都证明zab其实就是paxos的一种简化实现,但Apache 自己的立场说zab不是paxos算法的实现,这个不需要去计较。

 

zab协议解决的问题和paxos一样,是解决分布式系统的数据一致性问题

 

zookeeper就是根据zab协议建立了主备模型完成集群的数据同步(保证数据的一致性),前面介绍了集群的各种角色,这说所说的主备架构模型指的是,在zookeeper集群中,只有一台leader(主节点)负责处理外部客户端的事务请求(写操作),leader节点负责将客户端的写操作数据同步到所有的follower节点中。

 技术图片

 

zab协议核心是在整个zookeeper集群中只有一个节点既leader将所有客户端的写操作转化为事务(提议proposal.leader节点再数据写完之后,将向所有的follower节点发送数据广播请求(数据复制),等所有的follower节点的反馈,在zab协议中,只要超过半数follower节点反馈ok,leader节点会向所有follower服务器发送commit消息,既将leader节点上的数据同步到follower节点之上。

 技术图片

 

 

发现,整个流程其实和paxos协议其实大同小异。说zabpaxos的一种实现方式其实并不过分。

Zab再细看可以分成两部分。第一的消息广播模式,第二是崩溃恢复模式。

 技术图片

 

 

正常情况下当客户端对zk有写的数据请求时,leader节点会把数据同步到follower节点,这个过程其实就是消息的广播模式

在新启动的时候,或者leader节点奔溃的时候会要选举新的leader,选好新的leader之后会进行一次数据同步操作,整个过程就是奔溃恢复。

 

 

1.2.4.2. 消息广播模式

为了保证分区容错性,zookeeper是要让每个节点副本必须是一致的

 

  1. zookeeper集群中数据副本的传递策略就是采用的广播模式
  2. Zab协议中的leader等待followerack反馈,只要半数以上的follower成功反馈就好,不需要收到全部的follower反馈。

 技术图片

 

zookeeper中消息广播的具体步骤如下:

1. 客户端发起一个写操作请求

2. Leader服务器将客户端的request请求转化为事物proposql提案,同时为每个proposal分配一个全局唯一的ID,即ZXID

3. leader服务器与每个follower之间都有一个队列,leader将消息发送到该队列

4. follower机器从队列中取出消息处理完(写入本地事物日志中)毕后,向leader服务器发送ACK确认。

5. leader服务器收到半数以上的followerACK后,即认为可以发送commit

6. leader向所有的follower服务器发送commit消息。

 

zookeeper采用ZAB协议的核心就是只要有一台服务器提交了proposal,就要确保所有的服务器最终都能正确提交proposal。这也是CAP/BASE最终实现一致性的一个体现

 

回顾一下:前面还讲了2pc协议,也就是两阶段提交,发现流程2pczab还是挺像的,

zookeeper中数据副本的同步方式与二阶段提交相似但是却又不同。二阶段提交的要求协调者必须等到所有的参与者全部反馈ACK确认消息后,再发送commit消息。要求所有的参与者要么全部成功要么全部失败。二阶段提交会产生严重阻塞问题paxos2pc没有这要求。

 

为了进一步防止阻塞,leader服务器与每个follower之间都有一个单独的队列进行收发消息,使用队列消息可以做到异步解耦。leaderfollower之间只要往队列中发送了消息即可。如果使用同步方式容易引起阻塞。性能上要下降很多

 

1.2.4.3. 崩溃恢复

 技术图片

 

1.2.4.3.1. 背景(什么情况下会崩溃恢复)

zookeeper集群中为保证任何所有进程能够有序的顺序执行,只能是leader服务器接受写请求,即使是follower服务器接受到客户端的请求,也会转发到leader服务器进行处理。

 

如果leader服务器发生崩溃(重启是一种特殊的奔溃,这时候也没leader),则zab协议要求zookeeper集群进行崩溃恢复和leader服务器选举。

 

1.2.4.3.2. 最终目的(恢复成什么样)

ZAB协议崩溃恢复要求满足如下2个要求: 
  确保已经被leader提交的proposal必须最终被所有的follower服务器提交。 
  确保丢弃已经被leader出的但是没有被提交的proposal

 

新选举出来的leader不能包含未提交的proposal,即新选举的leader必须都是已经提交了的proposalfollower服务器节点。同时,新选举的leader节点中含有最高的ZXID。这样做的好处就是可以避免了leader服务器检查proposal的提交和丢弃工作。

 

每个Server会发出一个投票,第一次都是投自己。投票信息:(myidZXID

l 收集来自各个服务器的投票

处理投票并重新投票,处理逻辑:优先比较ZXID,然后比较myid

统计投票,只要超过半数的机器接收到同样的投票信息,就可以确定leader

l 改变服务器状态

 

问题:为什么优先选大的zxid

 

1.2.5. Java客户端连接集群

 技术图片

ZK连接集群很简单,只需要把连接地址用逗号分隔就好。

Zookeeper高级

标签:ase   反馈   模式   模型   state   靠谱   ror   执行   无法   

原文地址:https://www.cnblogs.com/Soy-technology/p/11391851.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!