码迷,mamicode.com
首页 > 其他好文 > 详细

[问题2014A03] 解答

时间:2014-10-25 17:13:34      阅读:117      评论:0      收藏:0      [点我收藏+]

标签:strong   sp   on   2014   问题   amp   bs   nbsp   c   

[问题2014A03]  解答

注意到 \((A^*)^*\) 的第 (1,1) 元素是 \(A^*\) 的第 (1,1) 元素的代数余子式, 即为

\[\begin{vmatrix} A_{22} & A_{32} & \cdots & A_{n2} \\ A_{23} & A_{33} & \cdots & A_{n3} \\ \vdots & \vdots & \vdots & \vdots \\ A_{2n} & A_{3n} & \cdots & A_{nn} \end{vmatrix}.\]

因此我们可以更一般的证明如下结论: 若 \(n\geq 3\), 则 \((A^*)^*=|A|^{n-2}A\). 这是复旦高代教材第三版第 112 页的复习题 32, 其解答可以参考复旦高代白皮书第 43 页例 2.15. 当 \(A\) 是非异阵时, 结论很容易证明; 当 \(A\) 是奇异阵时, 可用相抵标准型或摄动法来处理. \(\Box\)

 

[问题2014A03] 解答

标签:strong   sp   on   2014   问题   amp   bs   nbsp   c   

原文地址:http://www.cnblogs.com/torsor/p/4050277.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!