标签:style blog http color io os ar for sp
题意:根据题意那个函数,构造x数组,问最大能递归层数
思路:转化为2-sat问题,由于x只能是0,1,c只能是0,1,2那么问题就好办了,对于0, 1, 2对应分别是3种表达式,然后二分深度,搞2-sat即可
代码:
#include <cstdio> #include <cstring> #include <cstdlib> #include <vector> #include <algorithm> using namespace std; const int MAXNODE = 205; struct TwoSet { int n; vector<int> g[MAXNODE * 2]; bool mark[MAXNODE * 2]; int S[MAXNODE * 2], sn; void init(int tot) { n = tot * 2; for (int i = 0; i < n; i += 2) { g[i].clear(); g[i^1].clear(); } memset(mark, false, sizeof(mark)); } void add_Edge(int u, int uval, int v, int vval) { u = u * 2 + uval; v = v * 2 + vval; g[u^1].push_back(v); g[v^1].push_back(u); } void delete_Edge(int u, int uval, int v, int vval) { u = u * 2 + uval; v = v * 2 + vval; g[u^1].pop_back(); g[v^1].pop_back(); } bool dfs(int u) { if (mark[u^1]) return false; if (mark[u]) return true; mark[u] = true; S[sn++] = u; for (int i = 0; i < g[u].size(); i++) { int v = g[u][i]; if (!dfs(v)) return false; } return true; } bool solve() { for (int i = 0; i < n; i += 2) { if (!mark[i] && !mark[i + 1]) { sn = 0; if (!dfs(i)){ for (int j = 0; j < sn; j++) mark[S[j]] = false; sn = 0; if (!dfs(i + 1)) return false; } } } return true; } } gao; const int N = 10005; int t, n, m; int a[N], b[N], c[N]; bool judge(int dep) { gao.init(n); for (int i = 0; i < dep; i++) { if (c[i] == 0) gao.add_Edge(a[i], 1, b[i], 1); else if (c[i] == 1) { gao.add_Edge(a[i], 0, a[i], 1); gao.add_Edge(a[i], 0, b[i], 1); gao.add_Edge(b[i], 0, a[i], 1); gao.add_Edge(b[i], 0, b[i], 1); } else gao.add_Edge(a[i], 0, b[i], 0); } return gao.solve(); } int main() { scanf("%d", &t); while (t--) { scanf("%d%d", &n, &m); for (int i = 0; i < m; i++) scanf("%d%d%d", &a[i], &b[i], &c[i]); int l = 0, r = m + 1; while (l < r) { int mid = (l + r) / 2; if (judge(mid)) l = mid + 1; else r = mid; } printf("%d\n", l - 1); } return 0; }
标签:style blog http color io os ar for sp
原文地址:http://blog.csdn.net/accelerator_/article/details/40453499