码迷,mamicode.com
首页 > 其他好文 > 详细

pandas入门之DataFrame

时间:2019-08-25 16:16:21      阅读:62      评论:0      收藏:0      [点我收藏+]

标签:表示   oat   note   lis   RKE   size   情况下   numpy   nump   

创建DataFrame

- DataFrame是一个【表格型】的数据结构。DataFrame由按一定顺序排列的多列数据组成。设计初衷是将Series的使用场景从一维拓展到多维。DataFrame既有行索引,也有列索引。
- 创建DataFrame的方式
    - 列表
    - 字典
    - 系列
    - Numpy ndarrays
    - 另一个数据帧(DataFrame)
- DataFrame的参数
    - data   数据采取各种形式,如:ndarray,series,map,lists,dict,constant和另一个DataFrame。
    - index   对于行标签,要用于结果帧的索引是可选缺省值np.arrange(n),如果没有传递索引值。
    - columns  对于列标签,可选的默认语法是 - np.arange(n)。 这只有在没有索引传递的情况下才是这样。
    - dtype   每列的数据类型。
    - copy   如果默认值为False,则此命令(或任何它)用于复制数据。

列表创建DataFrame

单个列表

data = [1,2,3,4,5]
df = pd.DataFrame(data)
print(df)

   0
0  1
1  2
2  3
3  4
4  5

列表套列表

# 列表套列表
data = [[Alex,10],[Bob,12],[Clarke,13]]
df = pd.DataFrame(data,columns=["name","age"],dtype=float) # dtype指定输出的数字类型,可加可不加
print(df)

     name   age
0    Alex  10.0
1     Bob  12.0
2  Clarke  13.0

ndarrays/Lists[多维数组]的字典来创建DataFrame

- 所有的ndarrays必须具有相同的长度。如果传递了索引(index),则索引的长度应等于数组的长度。
- 如果没有传递索引,则默认情况下,索引将为range(n),其中n为数组长度。
import pandas as pd
data = {Name:[Tom, Jack, Steve, Ricky],Age:[28,34,29,42]}
df = pd.DataFrame(data)
print(df)   # 0,1,2,3 就是range(数组)得到的值


    Name  Age
0    Tom   28
1   Jack   34
2  Steve   29
3  Ricky   42

指定索引

import pandas as pd
data = {Name:[Tom, Jack, Steve, Ricky],Age:[28,34,29,42]}
df = pd.DataFrame(data,index=[1,2,3,4])   # 指定索引
print(df)

    Name  Age
1    Tom   28
2   Jack   34
3  Steve   29
4  Ricky   42

字典列表创建DataFrame 【列表中套字典】

# 字典列表可作为输入数据传递以用来创建数据帧(DataFrame),
data = [{a: 1, b: 2},{a: 5, b: 10, c: 20}]  # 字典键默认为列名,没有值得为NaN
df = pd.DataFrame(data,index=["first","second"])  # 自定义行索引
print(df)

        a   b     c
first   1   2   NaN
second  5  10  20.0

使用字典,行索引和列索引列表创建DataFrame

data = [{"name":"alex","age":87,"gender":""},{"name":"wuchao","age":20,"gender":""}]
df = pd.DataFrame(data,index=[1,2],columns=["name","age","gender"])  # 自定义行索引和列索引
print(df)

     name  age   gender
1    alex   872  wuchao   20      男

从Series的字典来创建数据帧

  • 字典的系列可以传递以形成一个DataFrame。 所得到的索引是通过的所有系列索引的并集
data = {
        "one":pd.Series(["1","2","3"],index=["a","b","c"],dtype=float), # 指定数字输出类型
        "tow":pd.Series(["1","2","3","4"],index=["a","b","c","d"])
       }
df = pd.DataFrame(data)
print(df)

   one tow
a  1.0   1
b  2.0   2
c  3.0   3
d  NaN   4

numpy 创建DataFrame

pd.DataFrame(np.random.randint(60,100,size=(3,4)))  # 60-100随机选择,3行4列


   0      1     2     3
0    95    74    71    92
1    95    91    79    98
2    94    87    62    65

指定索引

pd.DataFrame(np.random.randint(60,100,size=(3,4)),index=["A","B","C"],columns=["a","b","c","d"])  # 60-100随机选择,3行4列 指定行索引和列索引


    a     b     c    d
A    91    70    63    98
B    98    68    88    96
C    99    77    86    66

DataFrame属性

  • values  取出所有值
  • columns   列索引
  • index    行索引
  • shape   当前表是几行几列
res = pd.DataFrame(np.random.randint(60,100,size=(3,4)),index=["A","B","C"],columns=["a","b","c","d"])
res.values   # 取出所有数据
res.index    # 取出行索引
res.columns  # 取出列索引
res.shape    # 显示当前数据是几行几列
============================================

练习

根据以下考试成绩表,创建一个DataFrame,命名为df:
```
    张三  李四  
语文 150  0
数学 150  0
英语 150  0
理综 300  0
```

============================================
dic = {
    "张三":[150,150,150,300],
    "李四":[0,0,0,0]
}
df = pd.DataFrame(dic,index=["语文","数学","英语","理综"])
df



       张三   李四
语文    150    0
数学    150    0
英语    150    0
理综    300    0    

DataFrame 索引

列索引

(1) 对列进行索引

    - 通过类似字典的方式  df[q]
    - 通过属性的方式     df.q

 可以将DataFrame的列获取为一个Series。返回的Series拥有原DataFrame相同的索引,且name属性也已经设置好了,就是相应的列名。
res = pd.DataFrame(np.random.randint(60,100,size=(3,4)),index=["A","B","C"],columns=["a","b","c","d"])
res

      a     b    c     d
A    95    83    92    89
B    70    96    92    67
C    65    69    85    78
# 属性方式
res.a A
95 B 70 C 65 Name: a, dtype: int32
# 字典方式 res[
"a"] A 95 B 70 C 65 Name: a, dtype: int32 # 修改列索引 res.columns=["aa","bb","cc","dd"] res aa bb cc dd A 76 90 91 78 B 80 81 82 85 C 93 70 63 81 # 读取前两列 res[["aa","bb"]] aa bb A 76 90 B 80 81 C 93 70

行索引

- 使用.loc[]加index来进行行索引
- 使用.iloc[]加整数来进行行索引
    
同样返回一个Series,index为原来的columns。

演示

res = pd.DataFrame(np.random.randint(60,100,size=(3,4)),index=["A","B","C"],columns=["a","b","c","d"])
res
      a    b     c     d
A    91    83    96    75
B    88    92    91    60
C    73    79    72    79

查询

# loc方式
res.loc["A"]

a    91
b    83
c    96
d    75
Name: A, dtype: int32

# iloc方式
res.iloc[0]

a    91
b    83
c    96
d    75
Name: A, dtype: int32


res.loc[["A","B"]]

    a    b     c     d
A    95    83    92    89
B    70    96    92    67

元素索引的方法

 - 使用列索引
 - 使用行索引(iloc[3,1] or loc[C,q]) 行索引在前,列索引在后
res = pd.DataFrame(np.random.randint(60,100,size=(3,4)),index=["A","B","C"],columns=["a","b","c","d"])
res


      a     b    c     d
A    95    83    92    89
B    70    96    92    67
C    65    69    85    78    
res.iloc[2,3]  # 无论是行还是列 索引都是从0开始的  【78在表格中的2行3列的位置】

78

res.loc[["A","C"],"c"]  # 行数据取了A/C两行得数据,列取得c列的数据

A    92
C    85
Name: c, dtype: int32

DataFrame 切片

【注意】
直接用中括号时:
- 索引表示的是列索引
- 切片表示的是行切片
res = pd.DataFrame(np.random.randint(60,100,size=(3,4)),index=["A","B","C"],columns=["a","b","c","d"])
res


      a    b     c     d
A    64    60    82    97
B    64    74    63    90
C    88    68    60    71    
res[1:]   # 切片 表示的是行切片

        a    b    c    d
B    99    72    91    72
C    83    61    71    98    

res["c"]  # 索引表示的是列索引

A    82
B    63
C    60
Name: c, dtype: int32

在loc和iloc中使用切片(切列) : df.loc[‘B‘:‘C‘,‘丙‘:‘丁‘]

res.iloc[1,1:3]  # 取第二行,b-c列的数据    顾头不顾尾
b    74
c    63
Name: B, dtype: int32

res.iloc[:,1:3]  # 取所有行,b-c列数据
      b    c
A    60    82
B    74    63
C    68    60

res.loc["A":"C","b":"c"]   # 取A-C行  b-c列数据
      b    c
A    60    82
B    74    63
C    68    60

DataFrame的运算

DataFrame之间的运算

同Series一样:

- 在运算中自动对齐不同索引的数据
- 如果索引不对应,则补NaN
res = pd.DataFrame(np.random.randint(60,100,size=(3,4)),index=["A","B","C"],columns=["a","b","c","d"])
ret = pd.DataFrame(np.random.randint(60,100,size=(3,4)),index=["A","B","C"],columns=["a","b","c","f"])
res + ret


      a      b      c      d      f
A    138    174    173    NaN    NaN
B    142    168    180    NaN    NaN
C    160    156    187    NaN    NaN    

 

pandas入门之DataFrame

标签:表示   oat   note   lis   RKE   size   情况下   numpy   nump   

原文地址:https://www.cnblogs.com/songzhixue/p/11341838.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!