码迷,mamicode.com
首页 > 其他好文 > 详细

Manthan Codefest 19 题解

时间:2019-08-26 23:06:18      阅读:164      评论:0      收藏:0      [点我收藏+]

标签:子集   构造方法   tps   算法   部分   操作   com   pcs   需要   

这套题还是有点质量的吧 ……

题目链接

A. XORinacci

傻叉签到题,因为异或的性质所以这个序列的循环节长度只有 \(3\) ……

查看代码

B. Uniqueness

因为序列长度乃至数的种类都不超过 \(2000\),考虑先把序列离散化。

题意让我们求一个最短的区间满足如下性质,对于每一种数,其在此区间出现次数不小于在原序列中的出现次数减 \(1\)

可以先前缀和求一下对于每种数,当前位置及之前的出现次数,和至少一共需要删掉多少个这种数,即在原序列中的出现次数减 \(1\),方便以后的计算。

然后双指针确定一个这个区间即可,因为支持$ O(n^2)$ 的算法,所以 \(for\) 每一种数暴力 \(Check\)

查看代码

C. Magic Grid

结论题,看到 \(n\)\(4\) 的倍数就自然想到将网格拆成若干个 \(4 * 4\) 的网格来做,每一部分网格依然满足题意的性质,并且拼起来也使大网格满足题意性质。

结果发现 \(2 * 2\) 的网格即可满足性质…… 对于每一组连续的 \(4\) 个数,存在一种构造方法满足上述性质。

不明白就看代码吧,挺简单的。

查看代码

D. Restore Permutation

一道傻叉线段树因为写错递归的函数名调了半个多小时…… 属实降智了……

一开始读错题,看成是 \(s_i\) 表示 \(i\) 之前满足 \(p_j < p_i\) 的数的个数,那这道题目的套路就很常见,从后向前推,最后一个数就是当前未选的数中的第 \(s_i + 1\) 个数。

而正确的题意可谓从这上面发展而来,\(s_i\) 表示 \(i\) 之前满足 \(p_j < p_i\) 的数值之和。相当于把上述题意中,一个数的贡献从 \(1\) 改为了其数值而已。这样,用线段树维护前缀和,每次在上面二分查应该到哪个位置,即当前的数,然后选了的数就单点修改为 \(0\) 来删除对前缀和的贡献。

至于一些细节,思路清晰的话试一下就出来了。

查看代码

E. Let Them Slide

没来得及写,不过真的没想到只做 \(4\) 题也上分了……

容易发现每一行都是独立的,对每一列,我们只需要把每一行能对这个位置做的最大贡献加起来就好了,所以对每一行单独处理。

\(len\) 为当前行的序列长度,当 \(w > 2 * len\) 时,显然区间 \([len + 1,\ w - len]\) 是可以取到每一个数,包括空位置(贡献为 \(0\))的,对这一段区间可以直接加上 \(max(max\_num,\ 0)\)\(max\_num\) 为序列中最大值。

现在处理区间 \([1,\ len]\)\([w - len + 1,\ w]\),画图总结,对于前者中的每一个位置 \(j\),能取到的序列中的数为 \([max(0,\ j - w + len),\ j]\),对于后者,为 \([j - w + len,\ min(j,\ len + 1)]\),那么贡献就是这段区间中的区间最大值。

注意这两段区间如果存在重叠部分不要重叠区间计两次贡献,至于区间最大值,用 \(st\) 表处理即可,至于贡献的统计可以随便用数据结构做。

查看代码

F. Bits And Pieces

思路很巧妙,完全没思路…… 本没脑子选手的水平看来也就半斤八两,到此为止了……

考虑按位与的操作只会让二进制中的 1 变少,因此值域不会变大,可以对每一个数,枚举统计其可以被与出哪些数,并让此数 \(x\)\(cnt[x]\) 做出 \(1\) 的贡献。

巧妙之处在于,如果有两个数都可以和第三个数与出某个数 \(x\),那让这两个数做按位与,就可以与出一个二进制上只会比 \(x\) 多出 \(1\) 而不会少的数。换句话说,如果用它做或运算,那么至少能做出 \(x\) 所做的贡献。

这样,我们只想要知道有哪些数可以被序列中的两个数和另一个数与出。

可以暴力 \(Dfs\) 处理,这样每个数至多是 \(O(2^{20})\) 的。但是如果一个数已经处理过两次了,也就是说它及其它二进制的子集(姑且这样说吧……)已经都能被与出两次了,那么已经达到了我们的目的,就无需再处理了,所以总渐进时间复杂度是 \(O(n)\) 的。

我们要求的是当前数与后面某两个数按位或得到的最大值,就可以从上面 \(cnt[]\) 大于 \(2\) 的数中找,从高位到低位贪心地让 \(0\) 变成 \(1\),这里可以结合代码理解。

查看代码

Manthan Codefest 19 题解

标签:子集   构造方法   tps   算法   部分   操作   com   pcs   需要   

原文地址:https://www.cnblogs.com/nanjoqin/p/11415461.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!