标签:res basic info 英文 port img 数据集 concat default
代码所需数据集在 https://github.com/NELSONZHAO/zhihu/tree/master/machine_translation_seq2seq 下载。
tqdm是为了加载进度条使用。
训练代码
import warnings warnings.filterwarnings("ignore") import numpy as np import tensorflow as tf import matplotlib.pyplot as plt import tqdm #数据加载 #加载英文数据 with open("D:/XiXi/Eclipse/WORKPLACE/seq_to_seq/word2vec/small_vocab_en.txt", "r", encoding="utf-8") as f: source_text = f.read() #加载法文数据 with open("D:/XiXi/Eclipse/WORKPLACE/seq_to_seq/word2vec/small_vocab_fr.txt", "r", encoding="utf-8") as f: target_text = f.read() #数据预处理 # 构造英文词典 source_vocab = list(set(source_text.lower().split()))#227 # 构造法文词典 target_vocab = list(set(target_text.lower().split()))#354 # 特殊字符 SOURCE_CODES = [‘<PAD>‘, ‘<UNK>‘] TARGET_CODES = [‘<PAD>‘, ‘<EOS>‘, ‘<UNK>‘, ‘<GO>‘] # 在target中,需要增加<GO>与<EOS>特殊字符 # 构造英文映射字典 source_vocab_to_int = {word: idx for idx, word in enumerate(SOURCE_CODES + source_vocab)}#227+2=229,即英文字典中有229个单词 #print(source_vocab_to_int)#{‘<PAD>‘: 0, ‘<UNK>‘: 1, ‘disliked‘: 2, ‘a‘: 3,...} source_int_to_vocab = {idx: word for idx, word in enumerate(SOURCE_CODES + source_vocab)} #print(source_int_to_vocab)#{0: ‘<PAD>‘, 1: ‘<UNK>‘, 2: ‘my‘, 3: ‘pleasant‘, 4: "it‘s",...} # 构造法语映射词典 target_vocab_to_int = {word: idx for idx, word in enumerate(TARGET_CODES + target_vocab)}#354+4=358 target_int_to_vocab = {idx: word for idx, word in enumerate(TARGET_CODES + target_vocab)} #预料转换,将文本转换为数字,此处假设最大长度为20,不够20就进行pading,超过20进行截断 def text_to_int(sentence, map_dict, max_length=20, is_target=False): """ 对文本句子进行数字编码 @param sentence: 一个完整的句子,str类型 @param map_dict: 单词到数字的映射,dict @param max_length: 句子的最大长度 @param is_target: 是否为目标语句。在这里要区分目标句子与源句子,因为对于目标句子(即翻译后的句子)我们需要在句子最后增加<EOS> """ # 用<PAD>填充整个序列 text_to_idx = [] # unk index unk_idx = map_dict.get("<UNK>")#1 unknow word,即低频词汇 pad_idx = map_dict.get("<PAD>")#0 eos_idx = map_dict.get("<EOS>")#None # 如果是输入源文本,字典中没有的用unk索引代替 if not is_target: for word in sentence.lower().split(): text_to_idx.append(map_dict.get(word, unk_idx)) # 否则,对于输出目标文本需要做<EOS>的填充最后 else: for word in sentence.lower().split(): text_to_idx.append(map_dict.get(word, unk_idx)) text_to_idx.append(eos_idx)#末尾填充 # 如果超长需要截断 if len(text_to_idx) > max_length: return text_to_idx[:max_length] # 如果不够则增加<PAD> else: text_to_idx = text_to_idx + [pad_idx] * (max_length - len(text_to_idx)) return text_to_idx ## 对源句子进行转换 Tx = 20 source_text_to_int = [] for sentence in tqdm.tqdm(source_text.split("\n")): source_text_to_int.append(text_to_int(sentence, source_vocab_to_int, 20, is_target=False)) #对目标句子进行转换 Tx = 25 target_text_to_int = [] for sentence in tqdm.tqdm(target_text.split("\n")): target_text_to_int.append(text_to_int(sentence, target_vocab_to_int, 25, is_target=True)) ‘‘‘ #用于测试效果的句子 random_index = 77 print("-"*5 + "English example" + "-"*5) print(source_text.split("\n")[random_index]) print(source_text_to_int[random_index]) print() print("-"*5 + "French example" + "-"*5) print(target_text.split("\n")[random_index]) print(target_text_to_int[random_index]) ‘‘‘ X = np.array(source_text_to_int)#形状为(50173, 20) Y = np.array(target_text_to_int)#形状为(137860, 25) #模型构建 #模型输入 def model_inputs(): """ 构造输入 返回:inputs, targets, learning_rate, source_sequence_len, target_sequence_len, max_target_sequence_len,类型为tensor """ inputs = tf.placeholder(tf.int32, [None, None], name="inputs") targets = tf.placeholder(tf.int32, [None, None], name="targets") learning_rate = tf.placeholder(tf.float32, name="learning_rate") source_sequence_len = tf.placeholder(tf.int32, (None,), name="source_sequence_len") target_sequence_len = tf.placeholder(tf.int32, (None,), name="target_sequence_len") max_target_sequence_len = tf.placeholder(tf.int32, (None,), name="max_target_sequence_len") return inputs, targets, learning_rate, source_sequence_len, target_sequence_len, max_target_sequence_len #encode端 def encoder_layer(rnn_inputs, rnn_size, rnn_num_layers, source_sequence_len, source_vocab_size, encoder_embedding_size=100): """ 构造Encoder端 @param rnn_inputs: rnn的输入 @param rnn_size: rnn的隐层结点数 @param rnn_num_layers: rnn的堆叠层数 @param source_sequence_len: 英文句子序列的长度 @param source_vocab_size: 英文词典的大小 @param encoder_embedding_size: Encoder层中对单词进行词向量嵌入后的维度 """ # 对输入的单词进行词向量嵌入 encoder_embed = tf.contrib.layers.embed_sequence(rnn_inputs, source_vocab_size, encoder_embedding_size) # LSTM单元 def get_lstm(rnn_size): lstm = tf.contrib.rnn.LSTMCell(rnn_size, initializer=tf.random_uniform_initializer(-0.1, 0.1, seed=123)) return lstm # 堆叠rnn_num_layers层LSTM lstms = tf.contrib.rnn.MultiRNNCell([get_lstm(rnn_size) for _ in range(rnn_num_layers)]) encoder_outputs, encoder_states = tf.nn.dynamic_rnn(lstms, encoder_embed, source_sequence_len, dtype=tf.float32) return encoder_outputs, encoder_states #decode端 def decoder_layer_inputs(target_data, target_vocab_to_int, batch_size): """ 对Decoder端的输入进行处理 @param target_data: 法语数据的tensor @param target_vocab_to_int: 法语数据的词典到索引的映射 @param batch_size: batch size """ # 去掉batch中每个序列句子的最后一个单词 ending = tf.strided_slice(target_data, [0, 0], [batch_size, -1], [1, 1]) # 在batch中每个序列句子的前面添加”<GO>" decoder_inputs = tf.concat([tf.fill([batch_size, 1], target_vocab_to_int["<GO>"]), ending], 1) return decoder_inputs def decoder_layer_train(encoder_states, decoder_cell, decoder_embed, target_sequence_len, max_target_sequence_len, output_layer): """ Decoder端的训练 @param encoder_states: Encoder端编码得到的Context Vector @param decoder_cell: Decoder端 @param decoder_embed: Decoder端词向量嵌入后的输入 @param target_sequence_len: 法语文本的长度 @param max_target_sequence_len: 法语文本的最大长度 @param output_layer: 输出层 """ # 生成helper对象 training_helper = tf.contrib.seq2seq.TrainingHelper(inputs=decoder_embed, sequence_length=target_sequence_len, time_major=False) training_decoder = tf.contrib.seq2seq.BasicDecoder(decoder_cell, training_helper, encoder_states, output_layer) training_decoder_outputs, _, _ = tf.contrib.seq2seq.dynamic_decode(training_decoder, impute_finished=True, maximum_iterations=max_target_sequence_len) return training_decoder_outputs def decoder_layer_infer(encoder_states, decoder_cell, decoder_embed, start_id, end_id, max_target_sequence_len, output_layer, batch_size): """ Decoder端的预测/推断 @param encoder_states: Encoder端编码得到的Context Vector @param decoder_cell: Decoder端 @param decoder_embed: Decoder端词向量嵌入后的输入 @param start_id: 句子起始单词的token id, 即"<GO>"的编码 @param end_id: 句子结束的token id,即"<EOS>"的编码 @param max_target_sequence_len: 法语文本的最大长度 @param output_layer: 输出层 @batch_size: batch size """ start_tokens = tf.tile(tf.constant([start_id], dtype=tf.int32), [batch_size], name="start_tokens") inference_helper = tf.contrib.seq2seq.GreedyEmbeddingHelper(decoder_embed, start_tokens, end_id) inference_decoder = tf.contrib.seq2seq.BasicDecoder(decoder_cell, inference_helper, encoder_states, output_layer) inference_decoder_outputs, _, _ = tf.contrib.seq2seq.dynamic_decode(inference_decoder, impute_finished=True, maximum_iterations=max_target_sequence_len) return inference_decoder_outputs def decoder_layer(encoder_states, decoder_inputs, target_sequence_len, max_target_sequence_len, rnn_size, rnn_num_layers, target_vocab_to_int, target_vocab_size, decoder_embedding_size, batch_size): """ 构造Decoder端 @param encoder_states: Encoder端编码得到的Context Vector @param decoder_inputs: Decoder端的输入 @param target_sequence_len: 法语文本的长度 @param max_target_sequence_len: 法语文本的最大长度 @param rnn_size: rnn隐层结点数 @param rnn_num_layers: rnn堆叠层数 @param target_vocab_to_int: 法语单词到token id的映射 @param target_vocab_size: 法语词典的大小 @param decoder_embedding_size: Decoder端词向量嵌入的大小 @param batch_size: batch size """ decoder_embeddings = tf.Variable(tf.random_uniform([target_vocab_size, decoder_embedding_size])) decoder_embed = tf.nn.embedding_lookup(decoder_embeddings, decoder_inputs) def get_lstm(rnn_size): lstm = tf.contrib.rnn.LSTMCell(rnn_size, initializer=tf.random_uniform_initializer(-0.1, 0.1, seed=456)) return lstm decoder_cell = tf.contrib.rnn.MultiRNNCell([get_lstm(rnn_size) for _ in range(rnn_num_layers)]) # output_layer logits output_layer = tf.layers.Dense(target_vocab_size) with tf.variable_scope("decoder"): training_logits = decoder_layer_train(encoder_states, decoder_cell, decoder_embed, target_sequence_len, max_target_sequence_len, output_layer) with tf.variable_scope("decoder", reuse=True): inference_logits = decoder_layer_infer(encoder_states, decoder_cell, decoder_embeddings, target_vocab_to_int["<GO>"], target_vocab_to_int["<EOS>"], max_target_sequence_len, output_layer, batch_size) return training_logits, inference_logits #Seq2Seq模型 def seq2seq_model(input_data, target_data, batch_size, source_sequence_len, target_sequence_len, max_target_sentence_len, source_vocab_size, target_vocab_size, encoder_embedding_size, decoder_embeding_size, rnn_size, rnn_num_layers, target_vocab_to_int): """ 构造Seq2Seq模型 @param input_data: tensor of input data @param target_data: tensor of target data @param batch_size: batch size @param source_sequence_len: 英文语料的长度 @param target_sequence_len: 法语语料的长度 @param max_target_sentence_len: 法语的最大句子长度 @param source_vocab_size: 英文词典的大小 @param target_vocab_size: 法语词典的大小 @param encoder_embedding_size: Encoder端词嵌入向量大小 @param decoder_embedding_size: Decoder端词嵌入向量大小 @param rnn_size: rnn隐层结点数 @param rnn_num_layers: rnn堆叠层数 @param target_vocab_to_int: 法语单词到token id的映射 """ _, encoder_states = encoder_layer(input_data, rnn_size, rnn_num_layers, source_sequence_len, source_vocab_size, encoder_embedding_size) decoder_inputs = decoder_layer_inputs(target_data, target_vocab_to_int, batch_size) training_decoder_outputs, inference_decoder_outputs = decoder_layer(encoder_states, decoder_inputs, target_sequence_len, max_target_sentence_len, rnn_size, rnn_num_layers, target_vocab_to_int, target_vocab_size, decoder_embeding_size, batch_size) return training_decoder_outputs, inference_decoder_outputs # Number of Epochs epochs = 10 # Batch Size batch_size = 128 # RNN Size rnn_size = 128 # Number of Layers rnn_num_layers = 1 # Embedding Size encoder_embedding_size = 100 decoder_embedding_size = 100 # Learning Rate lr = 0.001 # 每50轮打一次结果 display_step = 50 #构建图 train_graph = tf.Graph() with train_graph.as_default(): inputs, targets, learning_rate, source_sequence_len, target_sequence_len, _ = model_inputs() max_target_sequence_len = 25 train_logits, inference_logits = seq2seq_model(tf.reverse(inputs, [-1]), targets, batch_size, source_sequence_len, target_sequence_len, max_target_sequence_len, len(source_vocab_to_int), len(target_vocab_to_int), encoder_embedding_size, decoder_embedding_size, rnn_size, rnn_num_layers, target_vocab_to_int) training_logits = tf.identity(train_logits.rnn_output, name="logits") inference_logits = tf.identity(inference_logits.sample_id, name="predictions") masks = tf.sequence_mask(target_sequence_len, max_target_sequence_len, dtype=tf.float32, name="masks") with tf.name_scope("optimization"): cost = tf.contrib.seq2seq.sequence_loss(training_logits, targets, masks) optimizer = tf.train.AdamOptimizer(learning_rate) gradients = optimizer.compute_gradients(cost) clipped_gradients = [(tf.clip_by_value(grad, -1., 1.), var) for grad, var in gradients if grad is not None] train_op = optimizer.apply_gradients(clipped_gradients) #模型训练 def get_batches(sources, targets, batch_size): """ 获取batch """ for batch_i in range(0, len(sources)//batch_size): start_i = batch_i * batch_size # Slice the right amount for the batch sources_batch = sources[start_i:start_i + batch_size] targets_batch = targets[start_i:start_i + batch_size] # Need the lengths for the _lengths parameters targets_lengths = [] for target in targets_batch: targets_lengths.append(len(target)) source_lengths = [] for source in sources_batch: source_lengths.append(len(source)) yield sources_batch, targets_batch, source_lengths, targets_lengths with tf.Session(graph=train_graph) as sess: sess.run(tf.global_variables_initializer()) for epoch_i in range(epochs): for batch_i, (source_batch, target_batch, sources_lengths, targets_lengths) in enumerate( get_batches(source_text_to_int, target_text_to_int, batch_size)): _, loss = sess.run( [train_op, cost], {inputs: source_batch, targets: target_batch, learning_rate: lr, source_sequence_len: sources_lengths, target_sequence_len: targets_lengths}) if batch_i % display_step == 0 and batch_i > 0: batch_train_logits = sess.run( inference_logits, {inputs: source_batch, source_sequence_len: sources_lengths, target_sequence_len: targets_lengths}) print(‘Epoch {:>3} Batch {:>4}/{} - Loss: {:>6.4f}‘ .format(epoch_i, batch_i, len(source_text_to_int) // batch_size, loss)) # Save Model saver = tf.train.Saver() saver.save(sess, "checkpoints/dev") print(‘Model Trained and Saved‘)
预测代码
可输入任意句子
import warnings warnings.filterwarnings("ignore") import numpy as np import tensorflow as tf import matplotlib.pyplot as plt import tqdm #数据加载 #加载英文数据 with open("D:/XiXi/Eclipse/WORKPLACE/seq_to_seq/word2vec/small_vocab_en.txt", "r", encoding="utf-8") as f: source_text = f.read() #加载法文数据 with open("D:/XiXi/Eclipse/WORKPLACE/seq_to_seq/word2vec/small_vocab_fr.txt", "r", encoding="utf-8") as f: target_text = f.read() #数据预处理 # 构造英文词典 source_vocab = list(set(source_text.lower().split()))#227 # 构造法文词典 target_vocab = list(set(target_text.lower().split()))#354 # 特殊字符 SOURCE_CODES = [‘<PAD>‘, ‘<UNK>‘] TARGET_CODES = [‘<PAD>‘, ‘<EOS>‘, ‘<UNK>‘, ‘<GO>‘] # 在target中,需要增加<GO>与<EOS>特殊字符 # 构造英文映射字典 source_vocab_to_int = {word: idx for idx, word in enumerate(SOURCE_CODES + source_vocab)}#227+2=229,即英文字典中有229个单词 #print(source_vocab_to_int)#{‘<PAD>‘: 0, ‘<UNK>‘: 1, ‘disliked‘: 2, ‘a‘: 3,...} source_int_to_vocab = {idx: word for idx, word in enumerate(SOURCE_CODES + source_vocab)} #print(source_int_to_vocab)#{0: ‘<PAD>‘, 1: ‘<UNK>‘, 2: ‘my‘, 3: ‘pleasant‘, 4: "it‘s",...} # 构造法语映射词典 target_vocab_to_int = {word: idx for idx, word in enumerate(TARGET_CODES + target_vocab)}#354+4=358 target_int_to_vocab = {idx: word for idx, word in enumerate(TARGET_CODES + target_vocab)} #预料转换,将文本转换为数字,此处假设最大长度为20,不够20就进行pading,超过20进行截断 def text_to_int(sentence, map_dict, max_length=20, is_target=False): """ 对文本句子进行数字编码 @param sentence: 一个完整的句子,str类型 @param map_dict: 单词到数字的映射,dict @param max_length: 句子的最大长度 @param is_target: 是否为目标语句。在这里要区分目标句子与源句子,因为对于目标句子(即翻译后的句子)我们需要在句子最后增加<EOS> """ # 用<PAD>填充整个序列 text_to_idx = [] # unk index unk_idx = map_dict.get("<UNK>")#1 unknow word,即低频词汇 pad_idx = map_dict.get("<PAD>")#0 eos_idx = map_dict.get("<EOS>")#None # 如果是输入源文本,字典中没有的用unk索引代替 if not is_target: for word in sentence.lower().split(): text_to_idx.append(map_dict.get(word, unk_idx)) # 否则,对于输出目标文本需要做<EOS>的填充最后 else: for word in sentence.lower().split(): text_to_idx.append(map_dict.get(word, unk_idx)) text_to_idx.append(eos_idx)#末尾填充 # 如果超长需要截断 if len(text_to_idx) > max_length: return text_to_idx[:max_length] # 如果不够则增加<PAD> else: text_to_idx = text_to_idx + [pad_idx] * (max_length - len(text_to_idx)) return text_to_idx ## 对源句子进行转换 Tx = 20 source_text_to_int = [] for sentence in tqdm.tqdm(source_text.split("\n")): source_text_to_int.append(text_to_int(sentence, source_vocab_to_int, 20, is_target=False)) #对目标句子进行转换 Tx = 25 target_text_to_int = [] for sentence in tqdm.tqdm(target_text.split("\n")): target_text_to_int.append(text_to_int(sentence, target_vocab_to_int, 25, is_target=True)) # Batch Size batch_size = 128 def sentence_to_seq(sentence, source_vocab_to_int): """ 将句子转化为数字编码 """ unk_idx = source_vocab_to_int["<UNK>"] word_idx = [source_vocab_to_int.get(word, unk_idx) for word in sentence.lower().split()] return word_idx translate_sentence_text = input("请输入句子:") translate_sentence = sentence_to_seq(translate_sentence_text, source_vocab_to_int) loaded_graph = tf.Graph() with tf.Session(graph=loaded_graph) as sess: # Load saved model loader = tf.train.import_meta_graph(‘checkpoints/dev.meta‘) loader.restore(sess, tf.train.latest_checkpoint(‘./checkpoints‘)) input_data = loaded_graph.get_tensor_by_name(‘inputs:0‘) logits = loaded_graph.get_tensor_by_name(‘predictions:0‘) target_sequence_length = loaded_graph.get_tensor_by_name(‘target_sequence_len:0‘) source_sequence_length = loaded_graph.get_tensor_by_name(‘source_sequence_len:0‘) translate_logits = sess.run(logits, {input_data: [translate_sentence]*batch_size, target_sequence_length: [len(translate_sentence)*2]*batch_size, source_sequence_length: [len(translate_sentence)]*batch_size})[0] print(‘【Input】‘) print(‘ Word Ids: {}‘.format([i for i in translate_sentence])) print(‘ English Words: {}‘.format([source_int_to_vocab[i] for i in translate_sentence])) print(‘\n【Prediction】‘) print(‘ Word Ids: {}‘.format([i for i in translate_logits])) print(‘ French Words: {}‘.format([target_int_to_vocab[i] for i in translate_logits])) print("\n【Full Sentence】") print(" ".join([target_int_to_vocab[i] for i in translate_logits]))
标签:res basic info 英文 port img 数据集 concat default
原文地址:https://www.cnblogs.com/beautifulchenxi/p/11420095.html