标签:包含 var 存在 inf 直接 str 描述 正整数 its
定理描述:
若
则 $\lim\limits_{n\rightarrow\infty}\frac{x_n}{y_n}=\lim\limits_{n\rightarrow\infty}\frac{x_{n+1}-x_n}{y_{n+1}-y_n}$
证:假定$\lim\limits_{n\rightarrow\infty}\frac{x_{n+1}-x_n}{y_{n+1}-y_n}=a$由此,并注意到$y_n\rightarrow +\infty$,可知,对于任给的$\varepsilon >0$,存在正整数N,使当n>N时恒有
$\mid \frac{x_{n+1}-x_n}{y_{n+1}-y_n}-a\mid <\frac{\varepsilon}{2} (且y_n>0)$
于是,分数(当n>N时)
$\frac{x_{N+2}-x_{N+1}}{y_{N+2}-y_{N+1}},\frac{x_{N+3}-x_{N+2}}{y_{N+3}-y_{N+2}}\cdots ,\frac{x_{n}-x_{n-1}}{y_{n}-y_{n-1}},\frac{x_{n+1}-x_{n}}{y_{n+1}-y_{n}}$
都包含在$(a-\frac{\varepsilon}{2},a+\frac{\varepsilon}{2})$之间(由极限的定义可直接得出),因为$y_{n+1}>y_n$,所以这些分数的分母都是正数,于是,得
$(a-\frac{\varepsilon}{2})(y_{N+2}-y_{N+1})<x_{N+2}-x_{N+1}<(a+\frac{\varepsilon}{2})(y_{N+2}-y_{N+1})$,
$(a-\frac{\varepsilon}{2})(y_{N+3}-y_{N+2})<x_{N+3}-x_{N+2}<(a+\frac{\varepsilon}{2})(y_{N+3}-y_{N+2})$,
$\vdots$
$(a-\frac{\varepsilon}{2})(y_{n+1}-y_{n})<x_{n+1}-x_{n}<(a+\frac{\varepsilon}{2})(y_{n+1}-y_{n})$,
相加之,得
$(a-\frac{\varepsilon}{2})(y_{n+1}-y_{N+1})<x_{n+1}-x_{N+1}<(a+\frac{\varepsilon}{2})(y_{n+1}-y_{N+1})$
即$a-\frac{\varepsilon}{2}<\frac{x_{n+1}-x_{N+1}}{y_{n+1}-y_{N+1}}<a+\frac{\varepsilon}{2}$,所以当n>N时,恒有$\mid \frac{x_{n+1}-x_{N+1}}{y_{n+1}-y_{N+1}}-a\mid <\frac{\varepsilon}{2}$(注意N是确定的).另外我们有(当n>N时)
$\frac{x_n}{y_n}-a=\frac{x_{N+1}-ay_{N+1}}{y_n}+(1-\frac{y_{N+1}}{y_n})(\frac{x_{n+1}-x_{N+1}}{y_{n+1}-y_{N+1}}-a)$,
故$\mid \frac{x_n}{y_n}-a\mid \leq\mid \frac{x_{N+1}-ay_{N+1}}{y_n}\mid +\frac{\varepsilon}{2}$,
现取正整数N‘>N,使当n>N‘时,恒有
$\mid \frac{x_{N+1}-ay_{N+1}}{y_n}\mid <\frac{\varepsilon}{2}$,
于是,当n>N‘时,恒有$\mid \frac{x_n}{y_n}-a\mid <\varepsilon$.
由此可知,$\lim\limits_{n\rightarrow \infty}\frac{x_n}{y_n}=a=\lim\limits_{n\rightarrow\infty}\frac{x_{n+1}-x_n}{y_{n+1}-y_n}$.证毕.
注:条件3中换为$\lim\limits_{n\rightarrow\infty}\frac{x_{n+1}-x_n}{y_{n+1}-y_n}=+\infty(或-\infty)$.,则结论任然成立(也就是极限都不存在)
标签:包含 var 存在 inf 直接 str 描述 正整数 its
原文地址:https://www.cnblogs.com/Asika3912333/p/11422065.html