码迷,mamicode.com
首页 > 其他好文 > 详细

[JZOJ1901] 【2010集训队出题】光棱坦克

时间:2019-08-28 13:24:56      阅读:100      评论:0      收藏:0      [点我收藏+]

标签:代码   mat   nio   两种   传统   理解   lse   math   解法   

题目

题目大意

给你个平面上的一堆点,问序列\({p_i}\)的个数。
满足\(y_{p_{i-1}}>y_{p_i}\)并且\(x_{p_i}\)\(x_{p_i-1}\)\(x_{p_i-2}\)之间。


正解

我不知道为什么我的树状数组打挂了……尽管不一定能AC,但是WA了……

这题的正解有很多,最为传奇的,则是彭大爷的神仙解法。
显然这是个DP,而他抛弃了按照\(y\)从大到小排序的传统做法,反而是以\(x\)从小到大排序。将\({p_i}\)倒过来做。设\(f_{i,0/1}\)表示到\(i\)这个点,上一个点在左边或者右边的方案数。
DP的时候\(i\)从左到右扫过去,然后从右到左枚举\(j\),有两种转移:
如果\(y_j<y_i\),则从\(f_{j,1}\)转移到\(f_{i,0}\)
如果\(y_j>y_i\),则从\(f_{i,0}\)转移到\(f_{j,1}\)
这样的转移为什么是对的?实际上随便画个图就能理解了。
具体来说,在第一类转移的时候,很显然之前转移到\(f_{j,1}\)的是\(j\)\(i\)之间的状态;
在第二类转移的时候,很显然之前转移到\(f_{i,0}\)的是\(j\)\(i\)之间的状态。
这样就保证了题目要求的性质。


代码

using namespace std;
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 7010
inline int input(){
    char ch=getchar();
    while (ch<'0' || '9'<ch)
        ch=getchar();
    int x=0;
    do{
        x=x*10+ch-'0';
        ch=getchar();
    }
    while ('0'<=ch && ch<='9');
    return x;
}   
int n,m,mo;
struct Node{
    int x,y;
} d[N];
inline bool cmpd(const Node &a,const Node &b){return a.x<b.x;}
int f[N][2];
int main(){
    n=input(),mo=input();
    for (int i=1;i<=n;++i)
        d[i]={input(),input()};
    sort(d+1,d+n+1,cmpd);
    for (int i=1;i<=n;++i){
        f[i][0]=f[i][1]=1;
        for (int j=i-1;j>=1;--j)
            if (d[j].y<d[i].y)
                (f[i][0]+=f[j][1])%=mo;
            else
                (f[j][1]+=f[i][0])%=mo;
    }
    long long ans=0;
    for (int i=1;i<=n;++i)
        ans+=f[i][0]+f[i][1];
    printf("%lld\n",((ans-n)%mo+mo)%mo);
    return 0;
}

总结

这样的DP真是太鬼畜了……
彭大爷牛逼!!!
%%%

[JZOJ1901] 【2010集训队出题】光棱坦克

标签:代码   mat   nio   两种   传统   理解   lse   math   解法   

原文地址:https://www.cnblogs.com/jz-597/p/11423155.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!