标签:turn initial 模型 nump string 前缀 with var util
直接上代码:
import tensorflow as tf
from tensorflow.python.tools import freeze_graph
from tensorflow.python.framework.graph_util import convert_variables_to_constants
import os
import numpy as np
filename1 = "model_a.pb"
filename2 = "model_b.pb"
def load_graphdef(filename):
with tf.gfile.GFile(filename, "rb") as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
return graph_def
def load_graph(graph_def, prefix):
with tf.Graph().as_default() as graph:
tf.import_graph_def(graph_def, name=prefix)
return graph
graph1 = load_graphdef(filename1)
graph2 = load_graphdef(filename2)
graph1_out, = tf.import_graph_def(graph1, return_elements=['mode_a_output:0'], name="model_a")
graph2_out, = tf.import_graph_def(graph2, return_elements=['mode_b_output:0'], name="model_b")
z = tf.concat([graph1_out, graph2_out], 1)
tf.identity(z, "merge_output")
init_op = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init_op)
graph = convert_variables_to_constants(sess, sess.graph_def, ["merge_output"])
tf.train.write_graph(graph, '.', 'merge.pb', as_text=False)
合并后的pb文件,输入节点为原来输入节点的并集。和原模型输入的区别是:输入节点分别增加的对应的前缀model_a/, model_b/。
标签:turn initial 模型 nump string 前缀 with var util
原文地址:https://www.cnblogs.com/th3Bear/p/11438310.html