标签:c++ 定义 stdin getc mat ble html set sizeof
Description
给定一个 \(n\) 个点的带权无向完全图,求其所有生成树权值的 \(k\) 次方之和。
定义一个树的权值,为其所有边权值和。
由于答案可能很大,请输出答案对 \(998244353\) 取模的结果。
参考资料:hec0411。
大概是要先列出答案的式子:
设 \(E\) 为我们枚举的生成树的边集。
\[
Ans=\sum_{E}(\sum_{i\in E}w_i)^k\=\sum_E \prod_{i\in E} \binom{k}{a_i}w_i^{a_i}[\sum_{i\in E}a_i=k]\=\sum_E \frac{1}{k!} \prod_{i\in E} \frac{1}{a_i!} w_i^{a_i}[\sum_{i\in E}a_i=k]
\]
基尔霍夫矩阵可以求出:
\[
\sum_{E}\prod_{i\in E}w_i
\]
对于上面那个式子,我们发现每条边其实是个多项式:
\[
w(x)=\sum_{i=0}^k\frac{1}{i!}w^i
\]
所以可以发现最终答案的多项式项数大概是 \(n?k\) 。
所以我们可以代入大于 \(n*k+1\) 个值进去,利用矩阵树定理计算出对应的值,然后大佬用了拉格朗日插值来算第 \(k\) 项的系数,我觉得这好像用高斯消元搞一下就好了。
时间复杂度大概是:\(O(n^4k)\) 。
#include<bits/stdc++.h>
typedef long long ll;
const int maxn=31,mod=998244353;
typedef ll lar1[maxn*maxn];
typedef ll lar2[maxn][maxn];
namespace IO
{
char buf[1<<15],*fs,*ft;
inline char getc() { return (ft==fs&&(ft=(fs=buf)+fread(buf,1,1<<15,stdin),ft==fs))?0:*fs++; }
template<typename T>inline void read(T &x)
{
x=0;
T f=1, ch=getchar();
while (!isdigit(ch) && ch^'-') ch=getchar();
if (ch=='-') f=-1, ch=getchar();
while (isdigit(ch)) x=(x<<1)+(x<<3)+(ch^48), ch=getchar();
x*=f;
}
char Out[1<<24],*fe=Out;
inline void flush() { fwrite(Out,1,fe-Out,stdout); fe=Out; }
template<typename T>inline void write(T x,char str)
{
if (!x) *fe++=48;
if (x<0) *fe++='-', x=-x;
T num=0, ch[20];
while (x) ch[++num]=x%10+48, x/=10;
while (num) *fe++=ch[num--];
*fe++=str;
}
}
using IO::read;
using IO::write;
inline ll Quick_power(ll a,ll b)
{
ll ans=1;
while (b)
{
if (b&1) ans=ans*a%mod;
a=a*a%mod;
b>>=1;
}
return ans;
}
inline ll Gauss(ll a[maxn][maxn],int n)
{
ll ans=1;
for (int k=2; k<=n; ++k)
{
for (int i=k; i<=n; ++i)
if (a[i][k])
{
if (k^i) ans=ans*(mod-1)%mod, std::swap(a[k],a[i]);
break;
}
ans=ans*a[k][k]%mod;
ll INV=Quick_power(a[k][k],mod-2);
for (int i=k+1; i<=n; ++i)
{
ll tmp=INV*a[i][k]%mod;
for (int j=k; j<=n; ++j) a[i][j]=(a[i][j]-tmp*a[k][j]%mod+mod)%mod;
}
}
return ans;
}
int m;
lar1 f,h,fac,inv;
inline void Add(int x)
{
for (int i=m; i>=0; --i)
{
h[i]=h[i]*(mod-x)%mod;
if (i) (h[i]+=h[i-1])%=mod;
}
}
inline void Del(int x)
{
for (int i=0; i<=m; ++i)
{
if (i) h[i]=h[i]-h[i-1]+mod;
h[i]=h[i]*Quick_power(mod-x,mod-2)%mod;
}
}
lar2 w,val,a;
ll g[maxn][maxn][maxn];
int main()
{
int n,k;read(n);read(k);
m=n*k+3;
fac[0]=1;
for (int i=1; i<=m; ++i) fac[i]=fac[i-1]*i%mod;
inv[m]=Quick_power(fac[m],mod-2);
for (int i=m-1; i>=0; --i) inv[i]=inv[i+1]*(i+1)%mod;
for (int i=1; i<=n; ++i)
for (int j=1; j<=n; ++j) read(w[i][j]);
for (int i=1; i<=n; ++i)
for (int j=i+1; j<=n; ++j)
for (int t=0; t<=k; ++t) g[i][j][t]=Quick_power(w[i][j],t)*inv[t]%mod;
for (int x=1; x<=m; ++x)
{
for (int i=1; i<=n; ++i)
for (int j=i+1; j<=n; ++j)
{
val[i][j]=0;
ll now=1;
for (int t=0; t<=k; ++t) (val[i][j]+=g[i][j][t]*now)%=mod, now=now*x%mod;
}
memset(a,0,sizeof(a));
for (int i=1; i<=n; ++i)
for (int j=i+1; j<=n; ++j)
{
a[i][i]+=val[i][j], a[j][j]+=val[i][j];
a[i][j]-=val[i][j], a[j][i]-=val[i][j];
}
for (int i=1; i<=n; ++i)
for (int j=1; j<=n; ++j) a[i][j]=(a[i][j]%mod+mod)%mod;
f[x]=Gauss(a,n);
}
h[0]=1;
for (int i=1; i<=m; ++i) Add(i);
ll ans=0;
for (int i=1; i<=m; ++i)
{
Del(i);
ll now=1;
for (int j=1; j<=m; ++j)
if (i^j) now=now*(i-j)%mod;
now=Quick_power(now%mod+mod,mod-2);
ans=(ans+now*h[k]%mod*f[i])%mod;
Add(i);
}
write(ans*fac[k]%mod,'\n');
IO::flush();
return 0;
}
LUOGU 5296: [北京省选集训2019]生成树计数 Gauss+Matrix-tree
标签:c++ 定义 stdin getc mat ble html set sizeof
原文地址:https://www.cnblogs.com/G-hsm/p/11440231.html