Given a positive integer k, we define a rooted tree to be k-perfect, if and only if it meets both conditions below:
•Each node is either a leaf node or having exactly k direct offsprings.
•All leaf nodes have the same distance to the root (i.e., all leaf nodes are of the same depth).
Now you are given an unrooted tree, and you should answer these questions:
•Is it possible to assign it a root, so that the tree becomes k-perfect for some positive integer k?
•If possible, what is the minimal k?
Read from the standard input.
Each input contains multiple test cases.
The first line contains a single positive integer T, indicating the number of test cases.
For each test case, its first line contains a positive integer n, describing the number of tree nodes. Each of the next n?−?1 lines contains two space-separated integers u and v, which means there exists an edge between node u and v on the tree.
It is guaranteed each test case gives a valid unrooted tree, and the nodes are numbered with consecutive integers from 1 to n.
The sum of n in each input will not exceed 1e6.
Write to the standard output.
For each test case, output a single integer in a line:
•If the answer to the first question is "No", output −1.
•Otherwise, output the minimal k.
1 #pragma GCC optimize(2)
2 #include<bits/stdc++.h>
3 using namespace std;
4 const int N = 2e6+10;
5 const int inf = 0x3f3f3f3f ;
6
7 /*——————————————————Add_edge()————————————————*/
8
9 typedef struct Edge{
10 int to , next ;
11 }Edge ;
12 Edge e[N<<1];
13 int head[N] , cnt ;
14
15 void Add_edge( int u , int v ){
16 e[cnt] = Edge{ v ,head[u] };
17 head[u] = cnt ++ ;
18 }
19
20 /*——————If you ask me how much i love you ———————*/
21
22 int vis[N],du[N],dep[N],Num[N],n;
23 int p[N];
24 void Init(){
25 for(int i=0;i<=n;i++){
26 head[i] = -1 ;
27 Num[i] = dep[i] = p[i] = vis[i] = du[i] = 0 ;
28 }
29 cnt = 0 ;
30 }
31 int main()
32 {
33 int T;
34 scanf("%d",&T);
35 while(T--){
36
37 scanf("%d",&n);
38 Init();
39
40 for( int i = 1,u,v ; i < n ; i++ ){
41 scanf("%d%d",&u,&v);
42 Add_edge( u , v );
43 Add_edge( v , u );
44 du[u] ++ ; du[v] ++ ;
45 }
46 //直接判断节点个数<=3时都为1.
47 if( n <= 3 ){
48 printf("1\n");
49 continue ;
50 }
51
52 bool f = true;
53
54 int tot = 0 ;
55 for(int u = 1 ; u <= n ; u ++ ){
56 if( vis[du[u]] == 0 )
57 p[tot++] = du[u] ;
58 vis[du[u]] ++ ;
59 }
60
61 sort( p , p + tot );
62 int k = p[1] ;
63
64 //单链情况
65 if( tot == 2 && vis[1] == 2 ){
66 printf("1\n"); continue ;
67 }
68 //具有一层的情况
69 else if( tot == 2 && vis[1] == n - 1 ){
70 printf("%d\n",p[1]) ; continue ;
71 }
72 // 度数为k的只有一个,而且第三种度的个数一定是K+1
73 else if( tot == 3 ){
74 if( vis[p[1]] != 1 || p[1] != p[2] - 1 ){
75 f = false ;
76 }else{
77 int root = 0 , Max_dep = 0 ;
78 for(int u = 1 ; u <= n ; u++ ){
79 if( du[u] == p[1] ){
80 root = u ;
81 break ;
82 }
83 }
84 /* 利用深度来判断是否为满K叉树 */
85 queue< int > Q ;
86 Q.push( root );
87
88 dep[root] = 0 ;
89 Num[0] ++ ;
90
91 while( !Q.empty() ){
92 int u = Q.front() ;
93 Q.pop();
94 du[u] = -1 ;
95 for(int i = head[u] ; ~i ; i = e[i].next ){
96 int To = e[i].to;
97 if( du[To] == -1 ) continue ;
98 dep[To] = dep[u] + 1 ;
99 Num[dep[To]] ++ ;
100 Max_dep = max( dep[To] , Max_dep );
101 Q.push(To);
102
103 }
104 }
105
106 for(int i=0;i<Max_dep;i++){
107 if( Num[i]*k != Num[i+1] ) f = false ;
108 }
109 }
110 }else{
111 f = false ;
112 }
113
114 if( f ){
115 printf("%d\n",k);
116 }else{
117 printf("-1\n");
118 }
119 }
120 return 0 ;
121 }
122
123 /*
124 10
125 7
126 1 4
127 4 5
128 3 1
129 2 3
130 7 3
131 4 6
132 7
133 1 4
134 1 5
135 1 2
136 5 3
137 5 6
138 5 7
139 13
140 1 2
141 1 3
142 1 4
143 2 5
144 2 6
145 2 7
146 3 8
147 3 9
148 3 10
149 5 11
150 5 12
151 5 13
152 5
153 1 2
154 2 3
155 3 4
156 4 5
157
158 */
View Code