标签:计算 应该 复杂度 def oid ons 思路 long std
略。
考虑到尽可能多选强化卡是更优的,所以如果可以,最后只要选最大的一张攻击即可(除非强化卡不够了)。
那么按照这个思路,先把两个序列从大到小排序。
记录\(f_{i, j}\)表示选了\(i\)张强化卡(都要打),其中最后一张是第\(j\)张的所有方案的强化倍数的和。
则有
\[
f_{i, j} = a_i \sum_{k = 1} ^ {j - 1} f_{i - 1, k}
\]
对于攻击卡也类似。
但这并不是我们想要的。
我们想要的\(F_{i, j}\)应该是分到\(i\)张强化卡,(最优地)最后打出了\(j\)张强化卡的期望强化倍数之和。
因此,计算\(F_{p, q}\)的式子应该是
\[
F_{p, q} = \sum_{i = 1} ^ n f_{q, i} \binom{n - i}{p - q}
\]
单组复杂度\(\mathcal O(n ^ 2 + nm)\)。
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 3005, mod = 998244353;
int T, n, m, k, ans;
int a[N], b[N], s[N], c[N][N], f[N][N], g[N][N];
void prepare () {
c[0][0] = 1;
for (int i = 1; i < N; ++i) {
c[i][0] = 1;
for (int j = 1; j <= i; ++j) {
c[i][j] = (c[i - 1][j] + c[i - 1][j - 1]) % mod;
}
}
}
int F (int p, int q) {
if (p < q) {
return 0;
}
if (!q) {
return c[n][p];
}
int ret = 0;
for (int i = 1; i <= n; ++i) {
ret = (1ll * f[q][i] * c[n - i][p - q] + ret) % mod;
}
return ret;
}
int G (int p, int q) {
if (p < q) {
return 0;
}
int ret = 0;
for (int i = 1; i <= n; ++i) {
ret = (1ll * g[q][i] * c[n - i][p - q] + ret) % mod;
}
return ret;
}
int main () {
prepare();
for (scanf("%d", &T); T; --T) {
scanf("%d%d%d", &n, &m, &k);
for (int i = 1; i <= n; ++i) {
scanf("%d", &a[i]);
}
for (int i = 1; i <= n; ++i) {
scanf("%d", &b[i]);
}
sort(a + 1, a + n + 1), reverse(a + 1, a + n + 1);
sort(b + 1, b + n + 1), reverse(b + 1, b + n + 1);
for (int i = 1; i <= n; ++i) {
f[1][i] = a[i];
s[i] = (s[i - 1] + a[i]) % mod;
}
for (int i = 2; i <= n; ++i) {
for (int j = 1; j <= n; ++j) {
f[i][j] = 1ll * a[j] * s[j - 1] % mod;
}
for (int j = 1; j <= n; ++j) {
s[j] = (s[j - 1] + f[i][j]) % mod;
}
}
for (int i = 1; i <= n; ++i) {
g[1][i] = b[i];
s[i] = (s[i - 1] + b[i]) % mod;
}
for (int i = 2; i <= n; ++i) {
for (int j = 1; j <= n; ++j) {
g[i][j] = (1ll * b[j] * c[j - 1][i - 1] + s[j - 1] + mod) % mod;
}
for (int j = 1; j <= n; ++j) {
s[j] = (s[j - 1] + g[i][j]) % mod;
}
}
ans = 0;
for (int i = 0; i < m; ++i) {
if (i < k) {
ans = (1ll * F(i, i) * G(m - i, k - i) + ans) % mod;
} else {
ans = (1ll * F(i, k - 1) * G(m - i, 1) + ans) % mod;
}
}
printf("%d\n", ans);
}
return 0;
}
loj2538. 「PKUWC2018」Slay the Spire
标签:计算 应该 复杂度 def oid ons 思路 long std
原文地址:https://www.cnblogs.com/psimonw/p/11442485.html