标签:聚类 weight cli nes tar shape art its 数字
到目前为止,我们已经非常深入地了解了数据集,并且把它分成了训练子集与测试子集。
接下来,我们将使用聚类方法训练一个模型,然后使用该模型来预测测试子集的标签,最后评估该模型的性能。
聚类(clustering)是在一组未标记的数据中,将相似的数据(点)归到同一个类别中的方法。聚类与分类的最大不同在于分类的目标事先已知,而聚类则不知道。K均值聚类是聚类中的常用方法,它是基于点与点的距离来计算最佳类别归属,即靠得比较近的一组点(数据)被归为一类,每个聚类都有一个中心点。
我们首先创建聚类模型,对训练子集进行聚类处理,得到聚类中心点。然后使用模型预测测试子集的标签,预测时根据测试子集中的点(数据)到中心点的距离来进行分类。
示例
创建聚类模型。
import numpy as np
from sklearn import datasets
# 加载 `digits` 数据集
digits = datasets.load_digits()
from sklearn.preprocessing import scale
# 对`digits.data`数据进行标准化处理
data = scale(digits.data)
# print(data)
# 导入 `train_test_split`
from sklearn.model_selection import train_test_split
# 数据分成训练集和测试集
# `test_size`:如果是浮点数,在0-1之间,表示测试子集占比;如果是整数的话就是测试子集的样本数量,`random_state`:是随机数的种子
X_train, X_test, y_train, y_test, images_train, images_test = train_test_split(data, digits.target, digits.images, test_size=0.33, random_state=42)
# 导入“cluster”模块
from sklearn import cluster
# 创建KMeans模型
clf = cluster.KMeans(init='k-means++', n_clusters=10, random_state=42)
# 将训练数据' X_train '拟合到模型中,此处没有用到标签数据y_train,K均值聚类一种无监督学习。
clf.fit(X_train)
cluster.KMeans
的参数说明:
init=‘k-means++‘
- 指定初始化方法n_clusters=10
- 聚类数量,分成10个类别random_state=42
- 随机值种子我们利用K均值聚类方法创建一个模型后,得到了每个聚类的中心点,测试时,可以根据测试子集中的点(数据)到中心点的距离来进行分类。
可以使用下面方法显示聚类中心点图像:
# 导入 matplotlib
import matplotlib.pyplot as plt
# 图形尺寸(英寸)
fig = plt.figure(figsize=(8, 3))
# 添加标题
fig.suptitle('Cluster Center Images', fontsize=14, fontweight='bold')
# 对于所有标签(0-9)
for i in range(10):
# 在一个2X5的网格中,在第i+1个位置初始化子图
ax = fig.add_subplot(2, 5, 1 + i)
# 显示图像
ax.imshow(clf.cluster_centers_[i].reshape((8, 8)), cmap=plt.cm.binary)
# 不要显示坐标轴
plt.axis('off')
# 显示图形
plt.show()
显示
接下来预测测试子集的标签:
# 预测“X_test”的标签
y_pred=clf.predict(X_test)
# 打印出' y_pred '的前100个实例
print(y_pred[:100])
# 打印出' y_test '的前100个实例
print(y_test[:100])
输出
[0 3 3 6 8 9 8 9 8 8 4 2 7 1 2 4 3 7 3 8 2 8 3 7 4 0 3 8 0 3 2 3 9 2 2 0 3
2 7 0 0 3 4 3 0 4 3 1 0 3 7 4 3 8 0 1 3 1 1 2 1 2 3 8 2 3 7 1 7 3 3 3 3 7
7 1 2 8 3 3 3 1 8 3 3 1 0 2 2 3 4 9 4 3 3 9 3 2 2 7]
[6 9 3 7 2 1 5 2 5 2 1 9 4 0 4 2 3 7 8 8 4 3 9 7 5 6 3 5 6 3 4 9 1 4 4 6 9
4 7 6 6 9 1 3 6 1 3 0 6 5 5 1 9 5 6 0 9 0 0 1 0 4 5 2 4 5 7 0 7 5 9 5 5 4
7 0 4 5 5 9 9 0 2 3 8 0 6 4 4 9 1 2 8 3 5 2 9 0 4 4]
在上面的代码块中,预测测试集的标签,结果存储在y_pred中。然后打印出y_pred和y_test的前100个实例。可以看出模型预测的准确率并不高。
接下来,我们将进一步对模型的性能进行评估,分析模型预测的正确性。
让我们打印一个混淆矩阵:
# 从“sklearn”导入“metrics”
from sklearn import metrics
# 用“confusion_matrix()”打印出混淆矩阵
print(metrics.confusion_matrix(y_test, y_pred))
输出
[[ 0 54 1 0 0 0 0 0 0 0]
[ 0 0 15 0 29 0 0 0 0 11]
[ 1 0 2 0 7 0 0 0 27 15]
[ 0 0 0 49 1 0 0 4 1 1]
[ 0 0 57 0 0 0 3 4 0 0]
[ 1 0 2 34 6 0 0 5 25 0]
[56 1 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 5 55 2 0]
[ 0 0 0 18 28 0 0 2 4 0]
[ 1 0 5 55 2 0 1 4 0 0]]
混淆矩阵
混淆矩阵也称误差矩阵,是表示精度评价的一种标准格式,用n行n列的矩阵形式来表示,每一列代表预测值,每一行代表实际的类别。混淆矩阵对角线上的值表示预测值匹配数,其他位置表示错配的数量。例如第一行第二列是54,表示实际值是分类0,但预测值是分类1的错误预测发生了54次。
可以看出模型预测的准确率并不高:数字3预测对了49次,数字7预测对了55次,其他的都很低。
让我们继续打印一些常用的评估指标:
from sklearn.metrics import homogeneity_score, completeness_score, v_measure_score, adjusted_rand_score, adjusted_mutual_info_score, silhouette_score
print('% 9s' % 'inertia homo compl v-meas ARI AMI silhouette')
print('%i %.3f %.3f %.3f %.3f %.3f %.3f'
%(clf.inertia_,
homogeneity_score(y_test, y_pred),
completeness_score(y_test, y_pred),
v_measure_score(y_test, y_pred),
adjusted_rand_score(y_test, y_pred),
adjusted_mutual_info_score(y_test, y_pred),
silhouette_score(X_test, y_pred, metric='euclidean')))
输出:
inertia homo compl v-meas ARI AMI silhouette
48486 0.584 0.662 0.621 0.449 0.572 0.131
关于这些指标的详情,限于篇幅,不再赘述,你可以参考相关资料。
标签:聚类 weight cli nes tar shape art its 数字
原文地址:https://www.cnblogs.com/jinbuqi/p/11444654.html