码迷,mamicode.com
首页 > 其他好文 > 详细

逻辑回归-3.决策边界

时间:2019-09-02 19:25:20      阅读:104      评论:0      收藏:0      [点我收藏+]

标签:mes   不同   reg   space   mesh   com   img   矩形   att   

决策边界

技术图片
我们可以看出 决定y取不同值的边界为:\[ \theta^T \cdot x_b = 0 \]
上式表达式是一条直线,为决策边界,如果新来一个样本,和训练后得到的$ \theta $相乘,根据是否大于0,决定到底属于哪一类

画出决策边界

如果样本有两个特征\(x1,x2\),则决策边界有:\(\theta_0 + \theta_1 \cdot x1 +\theta_2 \cdot x2 = 0\) ,求得\(x2 = \frac{-\theta_0 - \theta_1 \cdot x1}{\theta_2}\)

# 定义x2和x1的关系表达式
def x2(x1):
    return (-logic_reg.interception_ - logic_reg.coef_[0] * x1)/logic_reg.coef_[1]
    
x1_plot = numpy.linspace(4,8,1000)
x2_plot = x2(x1_plot)

pyplot.scatter(X[y==0,0],X[y==0,1],color='red')
pyplot.scatter(X[y==1,0],X[y==1,1],color='blue')
pyplot.plot(x1_plot,x2_plot)
pyplot.show()

技术图片

不规则决策边界的绘制

特征域(为了可视化,特征值取2,即矩形区域)中可视化区域中所有的点,查看不规则决策边界
定义绘制特征域中所有点的函数:

def plot_decision_boundary(model,axis):
    x0,x1 = numpy.meshgrid(
        numpy.linspace(axis[0],axis[1],int((axis[1]-axis[0])*100)),
        numpy.linspace(axis[2],axis[3],int((axis[3]-axis[2])*100))
    )
    x_new = numpy.c_[x0.ravel(),x1.ravel()]
    y_predict = model.predict(x_new)
    zz = y_predict.reshape(x0.shape)
    
    from matplotlib.colors import ListedColormap
    custom_cmap = ListedColormap(['#EF9A9A','#FFF59D','#90CAF9'])
    pyplot.contourf(x0,x1,zz,cmap=custom_cmap)

绘制逻辑回归的决策边界:

plot_decision_boundary(logic_reg,axis=[4,7.5,1.5,4.5])
pyplot.scatter(X[y==0,0],X[y==0,1],color='blue')
pyplot.scatter(X[y==1,0],X[y==1,1],color='red')
pyplot.show()

技术图片

绘制K近邻算法的决策边界:

from mylib import KNN

knn_clf_all = KNN.KNNClassifier(k=3)
knn_clf_all.fit(iris.data[:,:2],iris.target)

plot_decision_boundary(knn_clf_all,axis=[4,8,1.5,4.5])
pyplot.scatter(iris.data[iris.target==0,0],iris.data[iris.target==0,1])
pyplot.scatter(iris.data[iris.target==1,0],iris.data[iris.target==1,1])
pyplot.scatter(iris.data[iris.target==2,0],iris.data[iris.target==2,1])
pyplot.show()

k近邻多分类(种类为3)下的决策边界
k取3时:
技术图片

k取50时:
技术图片

参考:慕课笔记

逻辑回归-3.决策边界

标签:mes   不同   reg   space   mesh   com   img   矩形   att   

原文地址:https://www.cnblogs.com/shuai-long/p/11448236.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!