码迷,mamicode.com
首页 > 其他好文 > 详细

kafka-初见

时间:2019-09-05 18:27:05      阅读:105      评论:0      收藏:0      [点我收藏+]

标签:HERE   trade   optional   criteria   direct   roo   cat   pair   flush   

消息队列 MQ

消息队列就是 消息 message 加 队列 queue,是一种消息传输的容器,提供生产和消费 API 来存储和获取消息。

消息队列分两种:点对点(p2p)、发布订阅(pub/sub)

相同点:生产的消息存入队列,都从队列中获取消息

不同点:p2p 模式是一个消息只能被消费一次,消费之后这个消息就不存在了,比如打电话;

    而发布订阅模式是一个消息可以被消费 N 次,而且可以被多个消费者同时消费,比如 微信公众号;

 

kafka 简介

kafka 就是一个 发布订阅消息系统,有以下特点:

高吞吐量:支持每秒百万级的消息生产消费

持久性:有一套完善的消息存储机制,确保消息安全持久

分布式:基于分布式的扩展和容错机制;kafka 会将数据复制几份到其他服务器上,如果一台服务器挂了,会自动切到其他服务器。

 

kafka 也是一个消息中间件;

常用来处理活跃的数据,如登录、浏览

 

kafka 组成

kafka 服务

topic:主题,代表消息的类别,如体育的,娱乐的

broker:消息代理,就是 集群中的一个节点,负责存储数据,topic 可以分区存储

partition:topic 物理上的分组,一个 topic 在 broker 中被分成 n 个 partition

message:消息,每个消息被分到对应的 partition,需要一种映射关系

 

kafka 服务相关

producer:消息生产者

consumer:消息消费者

zookeeper:协调 kafka 正常运行

 

broker 配置

一个 broker 代表一个 kafka 服务,配置文件为 kafka 配置文件:server.properties

1. 为了减少磁盘写入次数,kafka 会先把消息 buffer 起来,当消息达到一定数量或者过了一定时间后,再 flush 到磁盘

对应配置

############################# Log Flush Policy #############################

# Messages are immediately written to the filesystem but by default we only fsync() to sync
# the OS cache lazily. The following configurations control the flush of data to disk. 
# There are a few important trade-offs here:
#    1. Durability: Unflushed data may be lost if you are not using replication.
#    2. Latency: Very large flush intervals may lead to latency spikes when the flush does occur as there will be a lot of data to flush.
#    3. Throughput: The flush is generally the most expensive operation, and a small flush interval may lead to exceessive seeks. 
# The settings below allow one to configure the flush policy to flush data after a period of time or
# every N messages (or both). This can be done globally and overridden on a per-topic basis.

# The number of messages to accept before forcing a flush of data to disk
#log.flush.interval.messages=10000  <=========

# The maximum amount of time a message can sit in a log before we force a flush
#log.flush.interval.ms=1000  <=========

 

2. 消息保存一定时间会自动删除,默认 7 天,168 小时

对应配置

############################# Log Retention Policy #############################

# The following configurations control the disposal of log segments. The policy can
# be set to delete segments after a period of time, or after a given size has accumulated.
# A segment will be deleted whenever *either* of these criteria are met. Deletion always happens
# from the end of the log.

# The minimum age of a log file to be eligible for deletion
log.retention.hours=168  

# A size-based retention policy for logs. Segments are pruned from the log as long as the remaining
# segments dont drop below log.retention.bytes.
#log.retention.bytes=1073741824

# The maximum size of a log segment file. When this size is reached a new log segment will be created.
log.segment.bytes=1073741824

# The interval at which log segments are checked to see if they can be deleted according 
# to the retention policies
log.retention.check.interval.ms=300000

# By default the log cleaner is disabled and the log retention policy will default to just delete segments after their retention expires.
# If log.cleaner.enable=true is set the cleaner will be enabled and individual logs can then be marked for log compaction.
log.cleaner.enable=false

 

producer 配置

消息生产者,配置文件:producer.properties

1. partitioner.class:可以自定义 分区方法,指定用户自己写的算法

2. producer.type=sync:发送消息是同步还是异步,同步是发出消息后收到回应再发下一条,异步是只管发

3. 异步发送支持批量发送,提高发送效率,先把消息缓存到内存中,然后一次性发出去,对应参数 queue.buffering.max.ms=;queue.buffering.max.messages=;据说默认 5000 和 10000

 

consumer 配置

配置文件:consumer.properties

1. group.id=test-consumer-group:每个消费者都属于某个 group,这里指定组 id

2. kafka 对消息的消费形式跟分组有关,

组间,不同的组消费相同的数据,互不影响;

组内,组内成员消费相同的数据,同时只能有一个 consumer “在线”,且这个 consumer 同时只能消费一个 topic 的 1 个 partition,一个 partition 消费完毕,也可以消费 另一个 partition

  // 所以,对应一个 topic,同一个组不推荐 超过 partition 个数的成员来消费这个 topic,因为同时只能有1个consumer在线,最多需要 partition 个成员即可

3. 一个 consumer 开启多个线程,一个线程相当于一个 consumer

(这是Kafka用来实现一个Topic消息的广播(发给所有的Consumer)和单播(发给某一个Consumer)的手段。
一个Topic可以对应多个Consumer Group。如果需要实现广播,只要每个Consumer有一个独立的Group就可以了。
要实现单播只要所有的Consumer在同一个Group里。用Consumer Group还可以将Consumer进行自由的分组而不需要多次发送消息到不同的Topic。)

 

partition

每个 partition 在存储层面是个 append log 文件,新消息追加到文件尾部;

每条消息在 log 文件中有个位置称为 offset(偏移量);

越多的 partition 意味着可以容纳更多的 consumer,有效提升并发消费的能力;

业务分区增加 topic,数据量大增加 partition

 

message

3个属性:

offset:long型,代表此消息在 partition 中的序号,或者说 id

MessageSize:int32,代表字节大小

data:具体内容

 

broker 配置详解

# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# see kafka.server.KafkaConfig for additional details and defaults

############################# Server Basics #############################

##################################################################################
#  broker就是一个kafka的部署实例,在一个kafka集群中,每一台kafka都要有一个broker.id
#  并且,该id唯一,且必须为整数
##################################################################################
broker.id=10

############################# Socket Server Settings #############################

# The address the socket server listens on. It will get the value returned from 
# java.net.InetAddress.getCanonicalHostName() if not configured.
#   FORMAT:
#     listeners = security_protocol://host_name:port
#   EXAMPLE:
#     listeners = PLAINTEXT://your.host.name:9092
#listeners=PLAINTEXT://:9092

# Hostname and port the broker will advertise to producers and consumers. If not set, 
# it uses the value for "listeners" if configured.  Otherwise, it will use the value
# returned from java.net.InetAddress.getCanonicalHostName().
#advertised.listeners=PLAINTEXT://your.host.name:9092

##################################################################################
#The number of threads handling network requests
# 默认处理网络请求的线程个数 3个
##################################################################################
num.network.threads=3
##################################################################################
# The number of threads doing disk I/O
# 执行磁盘IO操作的默认线程个数 8
##################################################################################
num.io.threads=8

##################################################################################
# The send buffer (SO_SNDBUF) used by the socket server
# socket服务使用的进行发送数据的缓冲区大小,默认100kb
##################################################################################
socket.send.buffer.bytes=102400

##################################################################################
# The receive buffer (SO_SNDBUF) used by the socket server
# socket服务使用的进行接受数据的缓冲区大小,默认100kb
##################################################################################
socket.receive.buffer.bytes=102400

##################################################################################
# The maximum size of a request that the socket server will accept (protection against OOM)
# socket服务所能够接受的最大的请求量,防止出现OOM(Out of memory)内存溢出,默认值为:100m
# (应该是socker server所能接受的一个请求的最大大小,默认为100M)
##################################################################################
socket.request.max.bytes=104857600

############################# Log Basics (数据相关部分,kafka的数据称为log)#############################

##################################################################################
# A comma seperated list of directories under which to store log files
# 一个用逗号分隔的目录列表,用于存储kafka接受到的数据
##################################################################################
log.dirs=/home/uplooking/data/kafka

##################################################################################
# The default number of log partitions per topic. More partitions allow greater
# parallelism for consumption, but this will also result in more files across
# the brokers.
# 每一个topic所对应的log的partition分区数目,默认1个。更多的partition数目会提高消费
# 并行度,但是也会导致在kafka集群中有更多的文件进行传输
# (partition就是分布式存储,相当于是把一份数据分开几份来进行存储,即划分块、划分分区的意思)
##################################################################################
num.partitions=1

##################################################################################
# The number of threads per data directory to be used for log recovery at startup and flushing at shutdown.
# This value is recommended to be increased for installations with data dirs located in RAID array.
# 每一个数据目录用于在启动kafka时恢复数据和在关闭时刷新数据的线程个数。如果kafka数据存储在磁盘阵列中
# 建议此值可以调整更大。
##################################################################################
num.recovery.threads.per.data.dir=1

############################# Log Flush Policy (数据刷新策略)#############################

# Messages are immediately written to the filesystem but by default we only fsync() to sync
# the OS cache lazily. The following configurations control the flush of data to disk.
# There are a few important trade-offs(平衡) here:
#    1. Durability 持久性: Unflushed data may be lost if you are not using replication.
#    2. Latency 延时性: Very large flush intervals may lead to latency spikes when the flush does occur as there will be a lot of data to flush.
#    3. Throughput 吞吐量: The flush is generally the most expensive operation, and a small flush interval may lead to exceessive seeks.
# The settings below allow one to configure the flush policy to flush data after a period of time or
# every N messages (or both). This can be done globally and overridden on a per-topic basis.
# kafka中只有基于消息条数和时间间隔数来制定数据刷新策略,而没有大小的选项,这两个选项可以选择配置一个
# 当然也可以两个都配置,默认情况下两个都配置,配置如下。

# The number of messages to accept before forcing a flush of data to disk
# 消息刷新到磁盘中的消息条数阈值
#log.flush.interval.messages=10000

# The maximum amount of time a message can sit in a log before we force a flush
# 消息刷新到磁盘生成一个log数据文件的时间间隔
#log.flush.interval.ms=1000

############################# Log Retention Policy(数据保留策略) #############################

# The following configurations control the disposal(清理) of log segments(分片). The policy can
# be set to delete segments after a period of time, or after a given size has accumulated(累积).
# A segment will be deleted whenever(无论什么时间) *either* of these criteria(标准) are met. Deletion always happens
# from the end of the log.
# 下面的配置用于控制数据片段的清理,只要满足其中一个策略(基于时间或基于大小),分片就会被删除

# The minimum age of a log file to be eligible for deletion
# 基于时间的策略,删除日志数据的时间,默认保存7天
log.retention.hours=168

# A size-based retention policy for logs. Segments are pruned from the log as long as the remaining
# segments dont drop below log.retention.bytes. 1G
# 基于大小的策略,1G
#log.retention.bytes=1073741824

# The maximum size of a log segment file. When this size is reached a new log segment will be created.
# 数据分片策略
log.segment.bytes=1073741824

# The interval at which log segments are checked to see if they can be deleted according
# to the retention policies 5分钟
# 每隔多长时间检测数据是否达到删除条件
log.retention.check.interval.ms=300000

############################# Zookeeper #############################

# Zookeeper connection string (see zookeeper docs for details).
# This is a comma separated host:port pairs, each corresponding to a zk
# server. e.g. "127.0.0.1:3000,127.0.0.1:3001,127.0.0.1:3002".
# You can also append an optional chroot string to the urls to specify the
# root directory for all kafka znodes.
zookeeper.connect=uplooking01:2181,uplooking02:2181,uplooking03:2181

# Timeout in ms for connecting to zookeeper
zookeeper.connection.timeout.ms=6000

 

kafka-初见

标签:HERE   trade   optional   criteria   direct   roo   cat   pair   flush   

原文地址:https://www.cnblogs.com/yanshw/p/11468623.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!