码迷,mamicode.com
首页 > 其他好文 > 详细

分离数据集的方法

时间:2019-09-08 14:19:37      阅读:131      评论:0      收藏:0      [点我收藏+]

标签:样本   大小   相同   bsp   模型   最优   成本   不同   速度慢   

(1)K折交叉验证(KFold):通常K选取值为3、5、10

   当不能确定使用何种验证方法时,可采用K折验证法;

   当不知确定K的取值时,最优的情况是选10。

(2)分离训练数据集合评估数据集(train_test_split)

      执行效率非常高,可以有效的解决某些算法执行速度慢的问题,也可以解决数据量大的问题

      在指定分离数据大小的同时,可以对其随机粒度进行指定(seed),可以保证其每次执行都可以得到相同的结果,可以用于比较不同算法生成的模型的结果

(3)弃一交叉验证分离(LeaveOneOut)

    若样本有N个,那么就会有N个模型,所以评估所得的结果非常可靠,但是成本非常的高。

    常用于平衡评估算法,模型训练的速度和数据量的大小。

(4)重复随机分离评估数据集和训练数据集(ShuffleSplit)

    该过程类似于多次交叉验证分离;

              常用于平衡评估算法,模型训练的速度和数据量的大小。

分离数据集的方法

标签:样本   大小   相同   bsp   模型   最优   成本   不同   速度慢   

原文地址:https://www.cnblogs.com/Cheryol/p/11485451.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!