码迷,mamicode.com
首页 > 其他好文 > 详细

【数字图像处理】灰度直方图、直方图均衡化、直方图规定化

时间:2019-09-10 13:07:02      阅读:93      评论:0      收藏:0      [点我收藏+]

标签:-128   inline   大小   完成   image   图像处理   isp   rac   https   

 

 

灰度直方图

  一幅图像由不同灰度值的像素组成,图像中灰度的分布情况是该图像的一个重要特征。图像的灰度直方图就描述了图像中灰度分布情况,能够很直观的展示出图像中各个灰度级所占的多少。
图像的灰度直方图是灰度级的函数,描述的是图像中具有该灰度级的像素的个数:其中,横坐标是灰度级,纵坐标是该灰度级出现的频率。

灰度直方图的计算公式如下:

p(rk)=nk/MN

其中,rkrk是像素的灰度级,nknk是具有灰度rkrk的像素的个数,MNMN是图像中总的像素个数。

 

直方图均衡化 Histogram Equalization

假如图像的灰度分布不均匀,其灰度分布集中在较窄的范围内,使图像的细节不够清晰,对比度较低。通常采用直方图均衡化直方图规定化两种变换,使图像的灰度范围拉开或使灰度均匀分布,从而增大反差,使图像细节清晰,以达到增强的目的。
直方图均衡化,对图像进行非线性拉伸,重新分配图像的灰度值,使一定范围内图像的灰度值大致相等。这样,原来直方图中间的峰值部分对比度得到增强,而两侧的谷底部分对比度降低,输出图像的直方图是一个较为平坦的直方图。

均衡化算法

直方图的均衡化实际也是一种灰度的变换过程,将当前的灰度分布通过一个变换函数,变换为范围更宽、灰度分布更均匀的图像。也就是将原图像的直方图修改为在整个灰度区间内大致均匀分布,因此扩大了图像的动态范围,增强图像的对比度。通常均衡化选择的变换函数是灰度的累积概率,直方图均衡化算法的步骤:

  • 计算原图像的灰度直方图 P(Sk)=nknP(Sk)=nkn,其中nn为像素总数,nknk为灰度级SkSk的像素个数
  • 计算原始图像的累积直方图 CDF(Sk)=i=0knin=i=0kPs(Si)CDF(Sk)=∑i=0knin=∑i=0kPs(Si)
  • Dj=LCDF(Si)Dj=L⋅CDF(Si),其中 DjDj是目的图像的像素,CDF(Si)CDF(Si)是源图像灰度为i的累积分布,L是图像中最大灰度级(灰度图为255)

灰度直方图均衡化实现的步骤

1.统计灰度级中每个像素在整幅图像中的个数

2.计算每个灰度级占图像中的概率分布

3.计算累计分布概率

4.计算均衡化之后的灰度值

5.映射回原来像素的坐标的像素值

示例说明

来看看通过上述步骤怎样实现的拉伸。假设有如下图像:

技术图片

得图像的统计信息如下图所示,并根据统计信息完成灰度值映射:

技术图片

映射后的图像如下所示:

技术图片

灰度直方图均衡化实现

            //img_size为图像大小
            //Image_Use为图像数组
            //Use_ROWS为行,Use_Line为列
            float img_size = Use_ROWS * Use_Line * 1.0; int count_data[256],huidu_data[256]; //计数统计、均衡化的灰度值 float midu_data[256],leijimidu_data[256]; //概率密度、累计概率密度             //数组初始化 memset(count_data, 0, sizeof(count_data)); memset(midu_data, 0.0, sizeof(midu_data)); memset(leijimidu_data, 0.0, sizeof(leijimidu_data)); memset(huidu_data, 0.0, sizeof(huidu_data)); //1.统计灰度级中每个像素在整幅图像中的个数 for(int i = 0; i < Use_ROWS; i++) { for(int j = 0; j < Use_Line; j++) { count_data[Image_Use[i][j]]++; } } //2.计算每个灰度级占图像中的概率分布 for(int i = 0; i < 256; i++) { midu_data[i] = count_data[i]/ img_size; } //3.计算累计分布概率 leijimidu_data[0] = midu_data[0]; for(int i = 1; i < 256; i++) { leijimidu_data[i] = midu_data[i]+leijimidu_data[i-1]; } //4.计算均衡化之后的灰度值 for(int i =0; i <256; i++) { huidu_data[i] = (int)(255 * leijimidu_data[i]); } //5.映射回原来像素的坐标的像素值 for(int i = 0; i < Use_ROWS; i++) { for(int j = 0; j < Use_Line; j++) { Image_Use[i][j] = huidu_data[Image_Use[i][j]]; } }

 

 

 

 原始图像:

 

 

 技术图片

 

 直方图均衡化后的图像:

 技术图片

 

   

直方图规定化

参考:

图像处理基础(8):图像的灰度直方图、直方图均衡化、直方图规定化(匹配)

【数字图像处理】灰度直方图、直方图均衡化、直方图规定化

标签:-128   inline   大小   完成   image   图像处理   isp   rac   https   

原文地址:https://www.cnblogs.com/-wenli/p/11496620.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!