标签:停止 配置文件 tag 定义 libxml html load 参数 pycharm
写一个爬虫,需要做很多的事情。比如:发送网络请求、数据解析、数据存储、反反爬虫机制(更换ip代理、设置请求头等)、异步请求等。这些工作如果每次都要自己从零开始写的话,比较浪费时间。因此Scrapy
把一些基础的东西封装好了,在他上面写爬虫可以变的更加的高效(爬取效率和开发效率)。因此真正在公司里,一些上了量的爬虫,都是使用Scrapy
框架来解决。
流程图(1):
流程图(2):
Scrapy Engine(引擎)
:Scrapy
框架的核心部分。负责在Spider
和ItemPipeline
、Downloader
、Scheduler
中间通信、传递数据等。Spider(爬虫)
:发送需要爬取的链接给引擎,最后引擎把其他模块请求回来的数据再发送给爬虫,爬虫就去解析想要的数据。这个部分是我们开发者自己写的,因为要爬取哪些链接,页面中的哪些数据是我们需要的,都是由程序员自己决定。Scheduler(调度器)
:负责接收引擎发送过来的请求,并按照一定的方式进行排列和整理,负责调度请求的顺序等。Downloader(下载器)
:负责接收引擎传过来的下载请求,然后去网络上下载对应的数据再交还给引擎。Item Pipeline(管道)
:负责将Spider(爬虫)
传递过来的数据进行保存。具体保存在哪里,应该看开发者自己的需求。Downloader Middlewares(下载中间件)
:可以扩展下载器和引擎之间通信功能的中间件。Spider Middlewares(Spider中间件)
:可以扩展引擎和爬虫之间通信功能的中间件。
pip install scrapy
即可安装。注意:
- 在
ubuntu
上安装scrapy
之前,需要先安装以下依赖:sudo apt-get install python3-dev build-essential python3-pip libxml2-dev libxslt1-dev zlib1g-dev libffi-dev libssl-dev
,然后再通过pip install scrapy
安装。- 如果在
windows
系统下,提示这个错误ModuleNotFoundError: No module named ‘win32api‘
,那么使用以下命令可以解决:pip install pypiwin32
。
要使用Scrapy
框架创建项目,需要通过命令来创建。首先进入到你想把这个项目存放的目录。然后使用以下命令创建:
scrapy startproject [项目名称]
以下介绍下主要文件的作用:
items
的模型存储到本地磁盘中。scrapy gensipder qsbk "qiushibaike.com"
创建了一个名字叫做qsbk
的爬虫,并且能爬取的网页只会限制在qiushibaike.com
这个域名下。
import scrapy class QsbkSpider(scrapy.Spider): name = ‘qsbk‘ allowed_domains = [‘qiushibaike.com‘] start_urls = [‘http://qiushibaike.com/‘] def parse(self, response): pass
其实这些代码我们完全可以自己手动去写,而不用命令。只不过是不用命令,自己写这些代码比较麻烦。
要创建一个Spider,那么必须自定义一个类,继承自scrapy.Spider
,然后在这个类中定义三个属性和一个方法。
parse
方法。这个是个固定的写法。这个方法的作用有两个,第一个是提取想要的数据。第二个是生成下一个请求的url。settings.py
代码:在做一个爬虫之前,一定要记得修改setttings.py
中的设置。两个地方是强烈建议设置的。
ROBOTSTXT_OBEY
设置为False。默认是True。即遵守机器协议,那么在爬虫的时候,scrapy首先去找robots.txt文件,如果没有找到。则直接停止爬取。DEFAULT_REQUEST_HEADERS
添加User-Agent
。这个也是告诉服务器,我这个请求是一个正常的请求,不是一个爬虫。
爬虫部分代码:
import scrapy from abcspider.items import QsbkItem class QsbkSpider(scrapy.Spider): name = ‘qsbk‘ allowed_domains = [‘qiushibaike.com‘] start_urls = [‘https://www.qiushibaike.com/text/‘] def parse(self, response): outerbox = response.xpath("//div[@id=‘content-left‘]/div") items = [] for box in outerbox: author = box.xpath(".//div[contains(@class,‘author‘)]//h2/text()").extract_first().strip() content = box.xpath(".//div[@class=‘content‘]/span/text()").extract_first().strip() item = QsbkItem() item["author"] = author item["content"] = content items.append(item) return items
items.py部分代码:
pipeline部分代码:
import json class AbcspiderPipeline(object): def __init__(self): self.items = [] def process_item(self, item, spider): self.items.append(dict(item)) print("="*40) return item def close_spider(self,spider): with open(‘qsbk.json‘,‘w‘,encoding=‘utf-8‘) as fp: json.dump(self.items,fp,ensure_ascii=False)
运行scrapy项目。需要在终端,进入项目所在的路径,然后scrapy crawl [爬虫名字]
即可运行指定的爬虫。如果不想每次都在命令行中运行,那么可以把这个命令写在一个文件中。以后就在pycharm中执行运行这个文件就可以了。比如现在新创建一个文件叫做start.py
,然后在这个文件中填入以下代码:
from scrapy import cmdline cmdline.execute("scrapy crawl qsbk".split())
在上一个糗事百科的爬虫案例中。我们是自己在解析完整个页面后获取下一页的url,然后重新发送一个请求。有时候我们想要这样做,只要满足某个条件的url,都给我进行爬取。那么这时候我们就可以通过CrawlSpider
来帮我们完成了。CrawlSpider
继承自Spider
,只不过是在之前的基础之上增加了新的功能,可以定义爬取的url的规则,以后scrapy碰到满足条件的url都进行爬取,而不用手动的yield Request
。
之前创建爬虫的方式是通过scrapy genspider [爬虫名字] [域名]
的方式创建的。如果想要创建CrawlSpider
爬虫,那么应该通过以下命令创建:
scrapy genspider -c crawl [爬虫名字] [域名]
使用LinkExtractors
可以不用程序员自己提取想要的url,然后发送请求。这些工作都可以交给LinkExtractors
,他会在所有爬的页面中找到满足规则的url
,实现自动的爬取。以下对LinkExtractors
类做一个简单的介绍:
class scrapy.linkextractors.LinkExtractor( allow = (), deny = (), allow_domains = (), deny_domains = (), deny_extensions = None, restrict_xpaths = (), tags = (‘a‘,‘area‘), attrs = (‘href‘), canonicalize = True, unique = True, process_value = None )
主要参数讲解:
定义爬虫的规则类。以下对这个类做一个简单的介绍:
class scrapy.spiders.Rule( link_extractor, callback = None, cb_kwargs = None, follow = None, process_links = None, process_request = None )
主要参数讲解:
LinkExtractor
对象,用于定义爬取规则。CrawlSpider
使用了parse
作为回调函数,因此不要覆盖parse
作为回调函数自己的回调函数。我们想要在爬虫中使用xpath、beautifulsoup、正则表达式、css选择器等来提取想要的数据。但是因为scrapy
是一个比较重的框架。每次运行起来都要等待一段时间。因此要去验证我们写的提取规则是否正确,是一个比较麻烦的事情。因此Scrapy
提供了一个shell,用来方便的测试规则。当然也不仅仅局限于这一个功能。
打开cmd终端,进入到Scrapy
项目所在的目录,然后进入到scrapy
框架所在的虚拟环境中,输入命令scrapy shell [链接]
。就会进入到scrapy的shell环境中。在这个环境中,你可以跟在爬虫的parse
方法中一样使用了。
标签:停止 配置文件 tag 定义 libxml html load 参数 pycharm
原文地址:https://www.cnblogs.com/jrb2018/p/10139314.html