标签:不能 category proc 使用 ase 离线 sys 效率 htm
import org.apache.hadoop.hbase.client.{ConnectionFactory, Put, Scan}
import org.apache.hadoop.hbase.io.ImmutableBytesWritable
import org.apache.hadoop.hbase.util.Bytes
import org.apache.hadoop.hbase.{HBaseConfiguration, TableName}
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.SparkSession
/**
* 使用Spark来建立HBase中表sound的二级索引
*/
object MyIndexBuilder {
def main(args: Array[String]): Unit = {
val spark = SparkSession
.builder()
.appName("MyIndexBuilder")
.master("local")
.getOrCreate()
// 1、创建HBaseContext
val configuration = HBaseConfiguration.create()
configuration.set("hbase.zookeeper.quorum", "master,slave1,slave2")
val hBaseContext = new HBaseContext(spark.sparkContext, configuration)
// 2、读取HBase表sound中的f:n和f:c两个列的值以及他们对应的rowKey的值
// 并且需要区分开是哪一个列的值
val soundRDD = hBaseContext.hbaseRDD(TableName.valueOf("sound"), new Scan())
val indexerRDD: RDD[((String, Array[Byte]), ImmutableBytesWritable)] = soundRDD.flatMap { case (byteRowKey, result) =>
val nameValue = result.getValue(Bytes.toBytes("f"), Bytes.toBytes("n"))
val categoryValue = result.getValue(Bytes.toBytes("f"), Bytes.toBytes("c"))
// 区分开是哪一个列的值,使用key来区分
// 返回key是(tableName,列值), value是这个列对应的rowKey的值
Seq((("name_indexer", nameValue), byteRowKey), (("category_indexer", categoryValue), byteRowKey))
}
// 3、按照key进行分组,拿到相同列值对应的所有的rowKeys(因为在原表sound中多个rowKey的值可能会对应着相同的列值)
val groupedIndexerRDD: RDD[((String, Array[Byte]), Iterable[ImmutableBytesWritable])] = indexerRDD.groupByKey()
// 4、将不同的列值以及对应的rowKeys写入到相对应的indexer表中
groupedIndexerRDD.foreachPartition { partitionIterator =>
val conf = HBaseConfiguration.create()
conf.set("hbase.zookeeper.quorum", "master,slave1,slave2")
val conn = ConnectionFactory.createConnection(conf)
val nameIndexerTable = conn.getTable(TableName.valueOf("name_indexer"))
val categoryIndexerTable = conn.getTable(TableName.valueOf("category_indexer"))
try {
val nameIndexerTablePuts = new util.ArrayList[Put]()
val categoryIndexerTablePuts = new util.ArrayList[Put]()
partitionIterator.map { case ((tableName, indexerValue), rowKeys) =>
val put = new Put(indexerValue) // 将列值作为索引表的rowKey
rowKeys.foreach(rowKey => {
put.addColumn(Bytes.toBytes("f"), null, rowKey.get())
})
if (tableName.equals("name_indexer")) {
nameIndexerTablePuts.add(put) // 需要写入到表name_indexer中的数据
} else {
categoryIndexerTablePuts.add(put) // 需要写入到表category_indexer中的数据
}
}
nameIndexerTable.put(nameIndexerTablePuts)
categoryIndexerTable.put(categoryIndexerTablePuts)
} finally {
nameIndexerTable.close()
categoryIndexerTable.close()
conn.close()
}
}
spark.stop()
}
}
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.Cell;
import org.apache.hadoop.hbase.CellUtil;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.*;
import org.apache.hadoop.hbase.filter.CompareFilter;
import org.apache.hadoop.hbase.filter.RowFilter;
import org.apache.hadoop.hbase.filter.SubstringComparator;
import org.apache.hadoop.hbase.util.Bytes;
import java.io.IOException;
import java.util.ArrayList;
import java.util.HashSet;
import java.util.List;
import java.util.Set;
public class SecondaryIndexSearcher {
public static void main(String[] args) throws IOException {
Configuration config = HBaseConfiguration.create();
config.set("hbase.zookeeper.quorum", "master,slave1,slave2");
try(Connection connection = ConnectionFactory.createConnection(config)) {
Table nameIndexer = connection.getTable(TableName.valueOf("name_indexer"));
Table categoryIndexer = connection.getTable(TableName.valueOf("category_indexer"));
Table sound = connection.getTable(TableName.valueOf("sound"));
// 1、先从表name_indexer中找到rowKey包含“中国好声音”对应的所有的column值
Scan nameIndexerScan = new Scan();
SubstringComparator nameComp = new SubstringComparator("中国好声音");
RowFilter nameRowFilter = new RowFilter(CompareFilter.CompareOp.EQUAL, nameComp);
nameIndexerScan.setFilter(nameRowFilter);
Set<String> soundRowKeySetOne = new HashSet<>();
ResultScanner rsOne = nameIndexer.getScanner(nameIndexerScan);
try {
for (Result r = rsOne.next(); r != null; r = rsOne.next()) {
for (Cell cell : r.listCells()) {
soundRowKeySetOne.add(Bytes.toString(CellUtil.cloneValue(cell)));
}
}
} finally {
rsOne.close(); // always close the ResultScanner!
}
// 2、再从表category_indexer中找到rowKey包含“综艺”对应的所有的column值
Scan categoryIndexerScan = new Scan();
SubstringComparator categoryComp = new SubstringComparator("综艺");
RowFilter categoryRowFilter = new RowFilter(CompareFilter.CompareOp.EQUAL, categoryComp);
nameIndexerScan.setFilter(categoryRowFilter);
Set<String> soundRowKeySetTwo = new HashSet<>();
ResultScanner rsTwo = categoryIndexer.getScanner(categoryIndexerScan);
try {
for (Result r = rsTwo.next(); r != null; r = rsTwo.next()) {
for (Cell cell : r.listCells()) {
soundRowKeySetTwo.add(Bytes.toString(CellUtil.cloneValue(cell)));
}
}
} finally {
rsTwo.close(); // always close the ResultScanner!
}
// 3、合并并去重上面两步查询的结果
soundRowKeySetOne.addAll(soundRowKeySetTwo);
// 4、根据soundRowKeySetOne中所有的rowKeys去sound表中查询数据
List<Get> gets = new ArrayList<>();
for (String rowKey : soundRowKeySetOne) {
Get get = new Get(Bytes.toBytes(rowKey));
gets.add(get);
}
Result[] results = sound.get(gets);
for (Result result : results) {
for (Cell cell : result.listCells()) {
System.out.println(Bytes.toString(CellUtil.cloneRow(cell)) + "===> " +
Bytes.toString(CellUtil.cloneFamily(cell)) + ":" +
Bytes.toString(CellUtil.cloneQualifier(cell)) + "{" +
Bytes.toString(CellUtil.cloneValue(cell)) + "}");
}
}
}
}
}
标签:不能 category proc 使用 ase 离线 sys 效率 htm
原文地址:https://www.cnblogs.com/tesla-turing/p/11515351.html