码迷,mamicode.com
首页 > 其他好文 > 详细

计算机负数为什么使用补码及浮点型计算

时间:2019-09-15 16:56:06      阅读:115      评论:0      收藏:0      [点我收藏+]

标签:溢出   判断   计算   转化   超出   一个   复杂   四则运算   符号   

之所以不使用原码是因为源码在0处会产生正0和负0的区分,具有二义性,四则运算时符号位需要单独处理,且计算机硬件来说运算规则复杂,包括判断符号,异号操作,借位等。

负数采用补码操作后,可以将加减法统一为加法运算。

负数的补码是由该数的反码的最末位加1求得。

eg:

X=-1010101的三码:

原:11010101;反:10101010;补10101011

X=-0.1011的三码:

原:1.1011;反:1.0100;补:1.0101

【+0】=00000000;【-0】=10000000

【+0】补=00000000;【-0】补=(11111111)反+1=100000000(溢出第一位)=00000000;因此消除了正0负0的二义性,第一个问题得到解决。

计算67-10=57

67补码=01000011;-10补码=11110110;

67-10=01000011+11110110=100111001(第一位溢出)=00111001=57

将减法转化为加法,且不需要考虑符号位

但并不完全正确,比如两个正数相加变成了一个负数,这就是超出该数据的最大表达值的情况。

 

 

 

浮点型计算:以32位float为例:

最高位为符号位s,之后8位记作Exponent,剩余23位记作Significand

result=(-1)的s次方X(1+Significand)X2的(Exponent-128)次方

计算机负数为什么使用补码及浮点型计算

标签:溢出   判断   计算   转化   超出   一个   复杂   四则运算   符号   

原文地址:https://www.cnblogs.com/spock12345/p/11523279.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!