码迷,mamicode.com
首页 > 其他好文 > 详细

求和:fft,表达式化简

时间:2019-09-20 18:31:40      阅读:97      评论:0      收藏:0      [点我收藏+]

标签:fft   快速幂   快速   求和   表达   mes   公式   形式   its   

$f(n)=\sum\limits_{i=0}^{n} \sum\limits_{j=0}^{i} S(i,j) \times 2^j \times j!$

其中$S(i,j)$为第二类斯特林数,公式为$S(i,j)=\frac{1}{j!} \sum\limits_{k=0}^{j} (-1)^k C(j,k) (j-k)^i$

求$f(n)$,$n<=100000$,答案对$998244353(=2^{23} \times 7 \times 17 + 1)$取模

 

 

$f(n)=\sum\limits_{i=0}^{n} \sum\limits_{j=0}^{i} 2^j \times \sum\limits_{k=0}^{j} (-1)^k \times \frac{j!}{k! \times (j-k)!} \times (j-k)^i$

$=\sum\limits_{i=0}^{n} \sum\limits_{j=0}^{i} 2^j \times j! \times \sum\limits_{k=0}^{j} \frac{(j-k)^i}{(j-k)!} \times \frac{(-1)^k}{k!}$

$=\sum\limits_{j=0}^{n} 2^j \times j! \times \sum\limits_{k=0}^{j} \frac{\sum\limits_{i=0}^{n}(j-k)^i}{(j-k)!} \times \frac{(-1)^k}{k!}$

可以发现,$\sum\limits_{i=0}^{n}(j-k)^i$项就是一个等比数列求和,可以快速幂求出。

那么两个分数分别只与j-k和k有关了,相乘的话,就是卷积形式FFT求出,枚举最外层j即可。

求和:fft,表达式化简

标签:fft   快速幂   快速   求和   表达   mes   公式   形式   its   

原文地址:https://www.cnblogs.com/hzoi-DeepinC/p/11558679.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!