标签:bzoj sdoi2010 费用流 edmondskarp 拆点
题目大意:宇宙空间中进行了一次竞速大赛。有两种飞行方式,第一种是通过正常的道路,但是只能从标号小的飞到标号大的地方;第二种是直接过去,但是需要花费固定的时间。问正好遍历一次所有的点最少需要的多少时间。
思路:费用流。把每个点拆点,S到每个点的起点连费用0的边,向每个终点连费用为固定费用的边,图中原有的边从一个的起点连到另一个点的终点。然后每个点的终点向T连边。跑最小费用最大流就是最后的答案。
CODE:
#include <queue> #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #define MAXP 1700 #define MAX 4000000 #define S 0 #define T (points << 1|1) #define INF 0x3f3f3f3f using namespace std; int points,edges; int head[MAXP],total = 1; int next[MAX],aim[MAX],cost[MAX],flow[MAX]; int src[MAXP]; int f[MAXP],p[MAXP],from[MAXP]; bool v[MAXP]; inline void Add(int x,int y,int f,int c) { next[++total] = head[x]; aim[total] = y; flow[total] = f; cost[total] = c; head[x] = total; } inline void Insert(int x,int y,int f,int c) { Add(x,y,f,c); Add(y,x,0,-c); } inline bool SPFA() { static queue<int> q; while(!q.empty()) q.pop(); q.push(S); memset(f,0x3f,sizeof(f)); memset(v,false,sizeof(v)); f[S] = 0; while(!q.empty()) { int x = q.front(); q.pop(); v[x] = false; for(int i = head[x]; i; i = next[i]) if(f[aim[i]] > f[x] + cost[i] && flow[i] > 0) { f[aim[i]] = f[x] + cost[i]; if(!v[aim[i]]) { v[aim[i]] = true; q.push(aim[i]); } from[aim[i]] = x; p[aim[i]] = i; } } return f[T] != INF; } long long EdmondsKarp() { long long re = 0; while(SPFA()) { int remain_flow = INF; for(int i = T; i != S; i = from[i]) remain_flow = min(remain_flow,flow[p[i]]); for(int i = T; i != S; i = from[i]) { flow[p[i]] -= remain_flow; flow[p[i]^1] += remain_flow; } re += (long long)remain_flow * f[T]; } return re; } int main() { cin >> points >> edges; for(int x,i = 1; i <= points; ++i) { scanf("%d",&src[i]); Insert(0,i,1,0); Insert(0,i + points,1,src[i]); Insert(i + points,T,1,0); } for(int x,y,z,i = 1; i <= edges; ++i) { scanf("%d%d%d",&x,&y,&z); if(x > y) swap(x,y); Insert(x,y + points,1,z); } cout << EdmondsKarp() << endl; return 0; }
标签:bzoj sdoi2010 费用流 edmondskarp 拆点
原文地址:http://blog.csdn.net/jiangyuze831/article/details/40504279