标签:吐槽 天才 log 出现 tar 输入 一个 ack 存储方式
-Problem designed by Starria-
在模 10 意义下,答案变为最大数的最低位(即原数数位的最小值)和原数最低位的差。
令$S$为输入数字串,则答案为 $(\min_{i=1}^{n}S_i-S_n)%10$ 。
时间复杂度 $O(n)$ 。
-Problem designed by Winniechen-
这是一个很显然的动态规划问题。
令$g_{i,j}$表示第$i$天,手里有$j$个节点,最多会返还多少节点。
第$i$天获得节点的过程转移为$g_{i,j+f_j}=\max(g_{i,j+f_j},g_{i-1,j})$,而对于存储节点的过程,只需对每一种存储方式做一个完全背包即可。
-Problem designed by Starria-
定义长度不超过 $\frac{n-1}{2}$ ,且不含重复颜色的段为合法的段。记 $pre_x$ 为以 $x-1$ 为右端点的合法段最远的左端点, $nxt_x$ 为以 $x$ 为左端点的合法段最远的右端点。
枚举题面所述三元组中的 $a,b(a<b\le nxt_a+1)$ ,则合法的 $c$ 是 $(b,nxt_b+1]$ 与 $[pre_{a},n]$ 的交集。也就是说,当 $pre_{a}>nxt_b$ 时, $b$ 的贡献是 $nxt_{b}+2-pre_{a}$ 。
每次向右移动 $a$ 时,将 $(nxt_a+1,nxt_{a+1}+1]$ 区间内的 $b$ 的贡献挂在 $nxt_b$ 上,在移动 $pre_{a}$ 时将经过的贡献减去即可。
时空复杂度 $O(n)$ 。
利用数据结构可以简单地维护交集,这哪里卡得掉没有刻意去卡。
-Problem designed by Winniechen-
对于一个图很难处理,所以考虑将图简化,直接建立一棵生成树达到原来的效果。
由于我们询问的时候,要求只能走到编号 $\le y$ 的点,所以保留的边两端点编号的 $\max$ 应当尽可能小,这样就有更多的边可以被一次询问用到。
所以我们将边按照两端点的 $\max $ 排序,建立一棵 kruskal 重构树。(这个不会自行解决)
在此基础上维护一棵线段树和一个倍增数组,每次找到 kruskal 重构树上能到达的最高点,然后询问子树乘积和,修改就直接修改即可。
-Problem designed by Winniechen-
假设总攻击次数为 $k$ ,那么我们要把这 $k$ 次相同的攻击分配给 $n$ 个不同的人,根据插板法来看也就是在这 $k$ 次攻击里插 $n$ 个板。记令攻击次数恰为 $k$ 的方案为 $ans_1$ ,插板方法为 $ans_2$ , $k$ 的贡献即为 $ans_1\times ans_2$ 。
维护 $k$ 次项系数为一个第 $i$ 种数据结构攻击次数中插 $k$ 个板的方案的多项式 $F_i(x)$ ,那么 $[x^k]F_i^{a_i}(x)$ 就是第 $i$ 种里插 $k$ 个板的方案数了。
由于我们只有 $n$ 个板,所以多项式长度始终不超过 $n$ 。在模 $x^{n}$ 意义下做多项式快速幂,最后再将 $m$ 个多项式合并即可。
整体复杂度最优可以达到 $O(nm\log n)$ , std 写的是 $O(nm\log n\log a_i)$ 。
-Problem designed by negiizhao-
令 $E_S$ 表示点集 $S$ 内部的边数, $E_{S,T}$ 表示 $S$ 与 $T$ 之间的边数, $F_S$ 表示 $S$ 是 DAG 的方案数。
枚举入度为 0 的点集 $T$ ,转移为 $F_S=\sum_{T\subseteq S,T\neq \varnothing }(-1)^{|T|-1}F_{S\backslash T}2^{E_{T,S\backslash T}}$ 。
$S$ 中入度为 0 的点集的每个子集都会算一次,对其简单容斥即可得到系数 $(-1)^{|T|-1}$ ,而系数 $2^{E_{T,S\backslash T}}$ 来自于 $S\backslash T \rightarrow T$ 的边只能断掉或指向 $T$ 。
对DAG计数稍有了解的人可以从这里开始阅读
? \sout{对DAG计数稍有了解的人可以从这里开始阅读}
$2^{E_{T,S\backslash T}}$ 可以写作 $2^{E_S}-2^{E_T}-2^{E_{S\backslash T}}$ ,因此原式化为$$\frac{F_S}{2^{E_S}}=\sum_{T\subseteq S,T\neq \varnothing }\frac{(-1)^{|T|-1}}{2^{E_T}}\ast \frac{F_{S\backslash T}}{2^{E_{S\backslash T}}}$$
对上述式子进行子集卷积即可。
对DAG计数稍有了解的人可以从这里开始阅读$\surd$
最后看起来,CD放反了,EF放反了
尽请期待后天晚上的视频题解,届时出题人Winniechen和Starria会为大家讲解这次试题,并解答一些花絮!
Comet OJ - Contest #11 题解&赛后总结
标签:吐槽 天才 log 出现 tar 输入 一个 ack 存储方式
原文地址:https://www.cnblogs.com/Winniechen/p/11566727.html