码迷,mamicode.com
首页 > 其他好文 > 详细

机器学习入门(一)之----概念

时间:2019-09-22 19:33:42      阅读:96      评论:0      收藏:0      [点我收藏+]

标签:example   mat   maps   http   入门   ble   pst   训练   组成   

2019年9月22日13:52:59-2019年9月22日14:40:25
给定由一批输入输出数据对$\left(x^{(i)}, y^{(i)}\right) $ 组成的训练数据集,有监督学习的目标是学到一个较好的从输入$x^{(i)} $ 到输出$y^{(i)} $ 的映射。用来预测一个新的输入所对应的输出。
其中输入$x^{(i)} $ 又叫输入特征(features),输出$y^{(i)} $ 又叫目标变量或标签(target)。一个输入输出对$\left(x^{(i)}, y^{(i)}\right) $ 又叫一个训练样例或训练样本(training example)。$m $ 个训练样例组成一个训练集(training set)\(\left\{\left(x^{(i)}, y^{(i)}\right) ; i=1, \ldots, m\right\}\)

我们用\(\mathcal{X}\) 来表示输入空间,用$\mathcal{Y} $ 表示输出空间,则有监督学习的目标是给定训练集\(\left\{\left(x^{(i)}, y^{(i)}\right) ; i=1, \ldots, m\right\}\) ,学得一个从输入空间到输出空间的好的映射\(h : \mathcal{X} \mapsto \mathcal{Y}\) 。这个映射又叫假设(hypothesis)。下图显示了训练集,学习算法,输入,假设,输出之间的关系。

技术图片
根据目标变量$y^{(i)} $ 是否连续,又可分为回归问题(regression problem)和分类问题(classification problem)。

机器学习入门(一)之----概念

标签:example   mat   maps   http   入门   ble   pst   训练   组成   

原文地址:https://www.cnblogs.com/qizhien/p/11568546.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!