标签:mil 方案 使用 缓冲区 取数据 相同 阻塞 nal 本质
一、Map阶段:
a. 文件切片之后,每一个切片对应一个MapTask
b. 在MapTask中,默认按行读取,每读取一行,就调用一次map方法
c. map方法在执行的时候会将结果(这个结果中已经包含了分区信息)写到MapTask自带的缓冲区中。注意:每一个MapTask都会自带一个缓冲区
d. 当数据放到缓冲区中之后,数据在缓冲区中会进行分区(partition)、排序(sort)(扩展:在缓冲区中排序使用的排序算法是快速排序)。如果指定了合并类(combine),数据还会进行combine
e. 缓冲区是维系在内存中,默认是100M
f. 当缓冲区的使用达到指定条件(溢写阈值默认是0.8,即当缓冲区使用达到80%的时候会产生溢写)之后,MapTask会将这个缓冲区中的数据溢写(spill)到磁盘上产生溢写文件。后续的结果会继续写到缓冲区中。每一次溢写都会产生一个新的溢写文件
g. 如果产生了多个溢写文件,那么会将多个溢写文件合并(merge)成1个final out文件。如果溢写之后,后续结果放入缓冲区中但是没有达到溢写阈值,而数据又处理完成,那么MapTask会将溢写文件中的结果和缓冲区的结果直接合并(merge)到最后的final out文件中
h. 在merge过程中,结果会再次进行分区和排序,所以final out文件是整体分好区并且排好序
i. 如果指定了合并类(Combiner),并且溢写文件的个数>=3个,那么在merge过程中会自动进行一次combine
j. 注意问题:
i. 溢写不一定产生
ii. 溢写与否与输入的切片大小是没有直接关系
iii. 溢写文件的大小要考虑序列化因素
iv. 缓冲区本质上是一个字节数组,这个字节数组在底层做了改变,使缓冲区形成了一个环形的缓冲区。设置成环形的目的是为了减少寻址
v. 溢写阈值的作用是为了减少阻塞
二、Reduce阶段:
a. 每一个ReduceTask都会启动fetch线程去MapTask中抓取当前要处理的分区的数据
b. ReduceTask会将抓取过来的数据暂时放到文件中存储,从每一个MapTask中抓取的数据都会对应一个小文件
c. ReduceTask会将这些小文件去合并(merge)成一个文件,在merge过程中,数据会进行排序 - 将局部有序变成整体有序 - merge过程中的排序使用的排序算法是归并排序
d. merge完成之后,ReduceTask会将相同的键对应的值放到一块产生一个迭代器,这个过程从称之为分组(group)
e. 每一个键调用一次reduce方法,reduce方法将结果写到HDFS上
f. 注意问题:
i. 默认fetch线程的数量为5
ii. fetch线程通过HTTP请求的方式去抓取数据
iii. merge因子默认为10,表示每10个小文件合成一个大文件
iv. ReduceTask阈值默认为0.05,即当有5%的MapTask执行结束,就启动ReduceTask开始抓取数据
三、Shuffle调优:
a. 调大缓冲区,实际生产环境中一般将这个值调为250~400M
b. 调大溢写阈值,可以减少和磁盘的交互但是同时增大了阻塞的概率
c. 实际生产环境中,尽量增加Combine过程
d. 可以对final out文件进行压缩。这种方案是对网络资源的一种取舍。如果网络资源紧张可以考虑这种方式
e. 增多fetch线程的数量
f. 增大merge因子 - 不建议
g. 减小ReduceTask的阈值
推荐使用的方法是acde
标签:mil 方案 使用 缓冲区 取数据 相同 阻塞 nal 本质
原文地址:https://www.cnblogs.com/hi-zhixian/p/11569728.html