码迷,mamicode.com
首页 > 其他好文 > 详细

旅行商问题分析(分支限界法)

时间:2019-09-23 22:09:32      阅读:92      评论:0      收藏:0      [点我收藏+]

标签:最小值   遇到   rgs   ide   逻辑   style   剪枝   done   顶点   

一、题目

技术图片

 

 

 

二、思路

1、dfs

实验要求用多种思路完成,所以一开始就沿用了上一个实验马走棋盘的思路,添加了邻接矩阵来记录有向网的权值。总体思路还是DFS遍历搜索。

过程剪枝

1、因为要求为最短路径,而一般情况总会存在多条可行路径,在判断过程中需要走过每一条路径才能知道该路径的长度,但如果已知一条可行路径的长度,在计算另一条路径的时候,若还未完成巡回但此时路径长度已经大于已知最短可行路径,那么这条路的最终长度就必定大于已知最短路径,此时就可以不必接下去计算当前路径。

2、之前得出的路径长度可以帮助之后的路径进行快速判断,如果我们尽早得出较短的可行路径,之后的工作也会进行得更快,由剪枝1引出剪枝2,每次选择到下一点路径长度最短的点前进,这样就能较快得到较短的可行路径。

 

2、分支限界法

  按照书本上教我们的思路来实现分支限界法,首先对邻接矩阵进行初始化,求出其的最小下界和对应的矩阵,然后以这个矩阵为根节点,开始进行类似二叉树的遍历。

  在这个过程中,需要保持矩阵每行或每列都必须有一个以上的0,还需要一个函数来找出所有行中最小数中最大的。然后下一步就要决定是否走该行距离为0的点,如果选择走,就将点对应的行和列去掉,若不选择该点,则将该点置为无穷大。并比较选与不选情况下的下界变化,选择下界较小的情况继续进行递归处理,直到矩阵消失或剩下全为无穷大的不可到达点。

  遇到问题:根据以上的逻辑,在实际解决过程中,出现了爆栈的情况,通过调试发现程序运行情况和书本上不一样,书本上有一些变化并没有说明清楚,那么就需要重新考虑程序的递归出口解决爆栈问题。

  技术图片

 

 

最后根据书上的情况得修改为一共三种递归出口判断:

技术图片

 

1、  若剩下的全是无穷远或0(默认跳过-1即不存在的)

2、  若剩下全是无穷远

3、  若剩下全是0

若满足以上任意一种判断,可以直接得出当前下界即为最短路径。

技术图片

 

 

 

三、复杂度分析

以DFS为主要算法,O(e+v)

时间复杂度(V边数+ E顶点数)

实际复杂度比上述要小,因为在实际中并不会完整遍历所有可行路径。

 

分支限界法完成比较匆忙,代码中要多次循环遍历数组,存在诸多冗余,若不急循环,程序需要的步数及为顶点数,当不断的循环判断使得复杂度难以估计。

  

三、实现代码

1、DFS

 1 public class Sell {
 2     static int[][] byGroup;// 邻接矩阵
 3     static int[] visit;// 0表示未访问 1表示访问
 4     static int N;// 点的个数
 5     static int minstep = 10000;// 最小步数
 6 
 7     class ToNode {
 8         int n;// 第n个点
 9         int L;//// 当前点到第n个点的距离
10 
11         public ToNode(int n, int l) {
12             this.n = n;
13             this.L = l;
14         }
15     }
16 
17     public static Comparator<ToNode> LComparator = new Comparator<ToNode>() {// 优先队列的比較方法(到下一点的距离近到远
18         @Override
19         public int compare(ToNode tn1, ToNode tn2) {
20             return tn1.L - tn2.L;
21         }
22     };
23 
24     public void init() {
25         Scanner sc = new Scanner(System.in);
26         System.out.println("please int N:");
27         N = sc.nextInt();
28         byGroup = new int[N][N];
29         visit = new int[N];
30         for (int i = 0; i < N; i++) {
31             for (int j = 0; j < N; j++) {
32                 System.out.println("please int " + i + "-->" + j + " weight:");
33                 byGroup[i][j] = sc.nextInt();
34             }
35         }
36         DFS(0, 0);// 从0点开始
37     }
38 
39     public void DFS(int n, int step) {
40         if (visit[n] != 0 || step >= minstep) {// 当前点走过或当前已走长度大于已知最小可行长度
41             return;
42         }
43         if (step != 0) {// 第一次不赋值
44             visit[n] = 1;
45         }
46         int flag = 1;
47         for (int k = 0; k < visit.length; k++) {//判断是否走完所有点
48             if (visit[n] == 0) {
49                 flag = 0;
50                 break;
51             }
52         }
53         if (flag == 1 && n == 0) {// 巡回完成的判断
54             System.out.println("巡回完成");
55             if (step < minstep) {// 修改最短可行路径长度
56                 minstep = step;
57             }
58             System.out.println("now donestep is:" + step);
59         }
60         Queue<ToNode> nodePriorityQueue = new PriorityQueue<>(N, LComparator);// 每次來個優先隊列從小到大
61         for (int i = 0; i < byGroup[0].length; i++) {
62             if (i != n) {
63                 nodePriorityQueue.add(new ToNode(i, byGroup[n][i]));
64             }
65         }
66         while (!nodePriorityQueue.isEmpty()) {// 回溯
67             ToNode tn = nodePriorityQueue.poll();
68             DFS(tn.n, step + tn.L);
69         }
70     }
71 
72     public static void main(String[] args) {
73         Sell s = new Sell();
74         s.init();
75         System.out.println("mini step is: " + minstep);
76     }
77 }

 

2、分支限界法

  1 public class Sell2 {
  2     static int[][] group = { { -2, 17, 7, 35, 18 }, { 9, -2, 5, 14, 19 }, { 29, 24, -2, 30, 12 },
  3             { 27, 21, 25, -2, 48 }, { 15, 16, 28, 18, -2 } };
  4     //-1表示不存在 -2表示无穷大到不了
  5     //static int[] flag;//初始化时判断
  6     static int[] hmin;// 每行对应的最小值
  7     static int bound;
  8     static int N = 5;
  9     static int[] hz = new int[5];// 用来记录该行是否已经全为-1
 10 
 11     public void init() {// 初始化分支界限树的根节点
 12         Scanner sc = new Scanner(System.in);
 13         System.out.println("please int N:");
 14         // N = sc.nextInt();
 15         // group = new int[N][N];
 16         // group
 17         int[] flag = new int[N];
 18         hmin = new int[N];
 19         /*
 20          * for (int i = 0; i < N; i++) { for (int j = 0; j < N; j++) {
 21          * System.out.println("please int " + i + "-->" + j + " weight:"); group[i][j] =
 22          * sc.nextInt(); } }
 23          */
 24         int minh;
 25         for (int i = 0; i < group[0].length; i++) {// 对行找最小并减去
 26             minh = 10000;
 27             for (int j = 0; j < group[0].length; j++) {// 找当前行的最小值
 28                 if (group[i][j] != -1 && group[i][j] != -2 && group[i][j] < minh) {
 29                     minh = group[i][j];
 30                 }
 31             }
 32             bound += minh;
 33             for (int j = 0; j < group[0].length; j++) {// 对每个数减去最小值并给flag赋值
 34                 if (group[i][j] != -1 && group[i][j] != -2) {
 35                     group[i][j] -= minh;
 36                     if (group[i][j] == 0) {
 37                         flag[j] = 1;
 38                     }
 39                 }
 40             }
 41         }
 42         int minl;
 43         for (int i = 0; i < flag.length; i++) {
 44             if (flag[i] != 1) {// 第i列
 45                 minl = 10000;
 46                 for (int j = 0; j < group[0].length; j++) {// 找当前列的最小值
 47                     if (group[j][i] != -1 && group[j][i] != -2 && group[j][i] < minl) {
 48                         minl = group[j][i];
 49                     }
 50                 }
 51                 bound += minl;
 52                 for (int j = 0; j < group[0].length; j++) {// 对每个数减去最小值并给flag赋值
 53                     if (group[j][i] != -1 && group[i][j] != -2) {
 54                         group[j][i] -= minl;
 55                     }
 56                 }
 57             }
 58         }
 59     }
 60 
 61     int minh = 10000;
 62     int bigMin = 0;// 所有行的最小数中最大的
 63 
 64     public void tree() {
 65         System.out.println(bound);
 66         int x, y = 0;// 每次对应的要或不要的点(x,y)
 67         // ********************************************************如果
 68         if (isDone1() == 1 || isDone2() == 0 || isDone3() == 0) {// 判断完成
 69             System.out.println("okk");
 70             System.exit(1);
 71         }
 72         x = findh();// 每行最小中最大的那个数的行
 73         for (int i = 0; i < N; i++) {
 74             if (group[x][i] == 0) {
 75                 y = i;
 76             }
 77         }
 78         if (need(x, y) > dontneed(x, y)) {// 不要这个点
 79             group[x][y] = -2;
 80             // 检测每行是否都有0
 81             int havaz = 0;
 82             for (int i = 0; i < N; i++) {
 83                 havaz = 0;
 84                 for (int j = 0; j < N; j++) {
 85                     if (group[i][j] == 0) {
 86                         havaz = 1;// 有0
 87                     }
 88                 }
 89                 if (havaz == 0) {// 第i行没0
 90                     bound += hmin[i];
 91                     for (int t = 0; t < N; t++) {
 92                         if (group[i][t] != -2 && group[i][t] != -1) {
 93                             group[i][t] -= hmin[i];
 94                         }
 95                     }
 96                 }
 97             }
 98             tree();// 递归
 99         } else {// 要这个点
100             hz[x] = 1;
101             if (group[y][x] != -1) {
102                 group[y][x] = -2;
103             }
104             for (int i = 0; i < N; i++) {// 把行消除
105                 group[x][i] = -1;
106             }
107             for (int i = 0; i < N; i++) {// 把列消除
108                 group[i][y] = -1;
109             }
110             // 检测每行是否都有0
111             int havaz = 0;
112             for (int i = 0; i < N; i++) {
113                 if (hz[i] != 1) {
114                     havaz = 0;
115                     for (int j = 0; j < N; j++) {
116                         if (group[i][j] == 0) {
117                             havaz = 1;// 有0
118                         }
119                     }
120                     if (havaz == 0) {
121                         bound += hmin[i];
122                         for (int t = 0; t < N; t++) {
123                             if (group[i][t] != -2 && group[i][t] != -1) {
124                                 group[i][t] -= hmin[i];
125                             }
126                             // group[i][t] -= hmin[i];
127                         }
128                     }
129                 }
130 
131             }
132             tree();// 递归
133         }
134     }
135 
136     // 要和不要这个点对应的bound
137     private int need(int x, int y) {
138         int needbound = bound;
139         for (int i = 0; i < N; i++) {// 去掉行
140             group[x][i] = -1;
141         }
142         for (int i = 0; i < N; i++) {// 去掉列
143             group[i][y] = -1;
144         }
145         // 检测每行是否都有0
146         int havaz;
147         for (int i = 0; i < N; i++) {
148             if (hz[i] != 1) {
149                 havaz = 0;
150                 for (int j = 0; j < N; j++) {
151                     if (group[i][j] == 0) {
152                         havaz = 1;// 有0
153                     }
154                 }
155                 if (havaz == 0) {
156                     needbound += hmin[i];
157                 }
158             }
159 
160         }
161         return needbound;
162     }
163 
164     private int dontneed(int x, int y) {
165         int dontneedbound = bound;
166         // 检测每行是否都有0 (去掉xy点)
167         int havaz;
168         for (int i = 0; i < N; i++) {
169             if (hz[i] != 1) {
170                 havaz = 0;
171                 for (int j = 0; j < N; j++) {
172                     if (i != x && j != y && group[i][j] == 0) {
173                         havaz = 1;// 有0
174                     }
175                 }
176                 if (havaz == 0) {// 这行没0
177                     dontneedbound += hmin[i];
178                 }
179             }
180         }
181         return dontneedbound;
182     }
183 
184     private int findh() {// 找出每行最小中最大的那个数在哪一行
185         int bigMin = 0;// 所有行的最小数中最大的
186         int minh, h = 0;
187         for (int i = 0; i < group[0].length; i++) {// 对行找最小并减去
188             if (hz[i] != 1) {
189                 minh = 10000;
190                 for (int j = 0; j < group[0].length; j++) {// 找当前行的最小值
191                     if (group[i][j] != -1 && group[i][j] != -2 && group[i][j] != 0 && group[i][j] < minh) {
192                         minh = group[i][j];
193                     }
194                 }
195                 hmin[i] = minh;// 更新当前行的最小值
196                 if (minh >= bigMin) {
197                     bigMin = minh;
198                     h = i;
199                 }
200             }
201 
202         }
203         return h;
204     }
205 
206     private int isDone1() {// 判断是否完成
207         int zn = 0;// 0的个数 如果只剩一个0就完成
208         for (int i = 0; i < N; i++) {
209             for (int j = 0; j < N; j++) {
210                 if (group[i][j] == 0) {
211                     ++zn;
212                 }
213             }
214         }
215         return zn;// 返回当前一共有几个0
216     }
217 
218     private int isDone2() {// 判断是否完成 如果除了-2就是0或-1 也算完成
219         int haszt = 0;// 不是0和-2的个数
220         for (int i = 0; i < N; i++) {
221             for (int j = 0; j < N; j++) {
222                 if (group[i][j] != 0 || group[i][j] != -2 || group[i][j] != -1) {
223                     ++haszt;
224                 }
225             }
226         }
227         return haszt;
228     }
229 
230     private int isDone3() {// 判断3
231         int haszt = 0;// 不是-2的个数
232         for (int i = 0; i < N; i++) {
233             for (int j = 0; j < N; j++) {
234                 if (group[i][j] != -2) {
235                     ++haszt;
236                 }
237             }
238         }
239         return haszt;
240     }
241 
242     public static void main(String[] args) {
243         Sell2 s2 = new Sell2();
244         s2.init();
245         s2.tree();
246         System.out.println("bound:" + bound);
247     }
248 }

 

旅行商问题分析(分支限界法)

标签:最小值   遇到   rgs   ide   逻辑   style   剪枝   done   顶点   

原文地址:https://www.cnblogs.com/Unicron/p/11575200.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!