标签:log文件 inter 自动 etl word project install makedirs tar
一个模块就是一个包含了python定义和声明的文件,文件名就是模块名字加上.py的后缀。
随着程序代码越写越多,在一个文件里代码就会越来越长,越来越不容易维护。
为了编写可维护的代码,我们把很多函数分组,分别放到不同的文件里。
这样,每个文件包含的代码就相对较少,很多编程语言都采用这种组织代码的方式。
在Python中,一个.py文件就称之为一个模块(Module)
如果你退出python解释器然后重新进入,那么你之前定义的函数或者变量都将丢失,因此我们通常将程序写到文件中以便永久保存下来,需要时就通过python test.py方式去执行,此时test.py被称为脚本script。如果我们不使用它,就不会加载到内存中,也不会使内存溢出。
随着程序的发展,功能越来越多,为了方便管理,我们通常将程序分成一个个的文件,这样做程序的结构更清晰,方便管理。这时我们不仅仅可以把这些文件当做脚本去执行,还可以把他们当做模块来导入到其他的模块中,实现了功能的重复利用。
示例文件:自定义模块my_module.py,文件名my_module.py,模块名my_module
1 #my_module.py 2 print(‘from the my_module.py‘) 3 4 money=1000 5 6 def read1(): 7 print(‘my_module->read1->money‘,money) 8 9 def read2(): 10 print(‘my_module->read2 calling read1‘) 11 read1() 12 13 def change(): 14 global money 15 money=0
模块可以包含可执行的语句和函数的定义,这些语句的目的是初始化模块,它们只在模块名第一次遇到导入import语句时才执行(import语句是可以在程序中的任意位置使用的,且针对同一个模块很import多次,为了防止你重复导入,python的优化手段是:第一次导入后就将模块名加载到内存了,后续的import语句仅是对已经加载大内存中的模块对象增加了一次引用,不会重新执行模块内的语句),如下
1 #demo.py 2 import my_module #只在第一次导入时才执行my_module.py内代码,此处的显式效果是只打印一次‘from the my_module.py‘,当然其他的顶级代码也都被执行了,只不过没有显示效果. 3 import my_module 4 import my_module 5 import my_module 6 7 ‘‘‘ 8 执行结果: 9 from the my_module.py 10 ‘‘‘ 11 12 demo.py
每个模块都是一个独立的名称空间,定义在这个模块中的函数,把这个模块的名称空间当做全局名称空间,这样我们在编写自己的模块时,就不用担心我们定义在自己模块中全局变量会在被导入时,与使用者的全局变量冲突
1 #测试一:money与my_module.money不冲突 2 #demo.py 3 import my_module 4 money=10 5 print(my_module.money) 6 7 ‘‘‘ 8 执行结果: 9 from the my_module.py 10 ‘‘‘
1 #测试二:read1与my_module.read1不冲突 2 #demo.py 3 import my_module 4 def read1(): 5 print(‘========‘) 6 my_module.read1() 7 8 ‘‘‘ 9 执行结果: 10 from the my_module.py 11 my_module->read1->money 1000 12 ‘‘‘
1 #测试三:执行my_module.change()操作的全局变量money仍然是my_module中的 2 #demo.py 3 import my_module 4 money=1 5 my_module.change() 6 print(money) 7 8 ‘‘‘ 9 执行结果: 10 from the my_module.py 11 ‘‘‘
模块在导入时会做三件事:
1.为源文件(my_module模块)创建新的名称空间,在my_module中定义的函数和方法若是使用到了global时访问的就是这个名称空间。
2.在新创建的命名空间中执行模块中包含的代码,见初始导入import my_module
提示:导入模块时到底执行了什么?
In fact function definitions are also ‘statements’ that are ‘executed’; the execution of a module-level function definition enters the function name in the module’s global symbol table.
事实上函数定义也是“被执行”的语句,模块级别函数定义的执行将函数名放入模块全局名称空间表,用globals()可以查看
3.创建名字my_module来引用该命名空间
相当于m1=1;m2=m1
使用场景一:
有两中sql模块mysql和oracle,根据用户的输入,选择不同的sql功能
1 #mysql.py 2 def sqlparse(): 3 print(‘from mysql sqlparse‘) 4 #oracle.py 5 def sqlparse(): 6 print(‘from oracle sqlparse‘) 7 8 #test.py 9 db_type=input(‘>>: ‘) 10 if db_type == ‘mysql‘: 11 import mysql as db 12 elif db_type == ‘oracle‘: 13 import oracle as db 14 15 db.sqlparse() 16 复制代码 17 18 场景一
示范用法二:
为已经导入的模块起别名的方式对编写可扩展的代码很有用,假设有两个模块xmlreader.py和csvreader.py,它们都定义了函数read_data(filename):用来从文件中读取一些数据,但采用不同的输入格式。可以编写代码来选择性地挑选读取模块,例如:
1 if file_format == ‘xml‘: 2 import xmlreader as reader 3 elif file_format == ‘csv‘: 4 import csvreader as reader 5 data=reader.read_date(filename)
对比import my_module,会将源文件的名称空间‘my_module‘带到当前名称空间中,使用时必须是my_module.名字的方式
而from 语句相当于import,也会创建新的名称空间,但是将my_module中的名字直接导入到当前的名称空间中,在当前名称空间中,直接使用名字就可以from my_module import read1,read
这样在当前位置直接使用read1和read2就好了,执行时,仍然以my_module.py文件全局名称空间
1 #测试一:导入的函数read1,执行时仍然回到my_module.py中寻找全局变量money 2 #demo.py 3 from my_module import read1 4 money=1000 5 read1() 6 ‘‘‘ 7 执行结果: 8 from the my_module.py 9 spam->read1->money 1000 10 ‘‘‘ 11 12 #测试二:导入的函数read2,执行时需要调用read1(),仍然回到my_module.py中找read1() 13 #demo.py 14 from my_module import read2 15 def read1(): 16 print(‘==========‘) 17 read2() 18 19 ‘‘‘ 20 执行结果: 21 from the my_module.py 22 my_module->read2 calling read1 23 my_module->read1->money 1000 24 ‘‘‘
如果当前有重名read1或者read2,那么会有覆盖效果。
1 #测试三:导入的函数read1,被当前位置定义的read1覆盖掉了 2 #demo.py 3 from my_module import read1 4 def read1(): 5 print(‘==========‘) 6 read1() 7 ‘‘‘ 8 执行结果: 9 from the my_module.py 10 ========== 11 ‘‘‘
需要特别强调的一点是:python中的变量赋值不是一种存储操作,而只是一种绑定关系,如下:
from my_module import money,read1 money=100 #将当前位置的名字money绑定到了100 print(money) #打印当前的名字 read1() #read此时指向的还是my_module中的read1指向的函数,读取my_module.py中的名字money,仍然为1000 ‘‘‘ from the my_module.py my_module->read1->money 1000 ‘‘‘
1 ‘‘‘ 2 所有的导入: 3 不论是import还是from import 4 都是执行完整的被导入文件 5 并且所有的文件的导入,都不会影响模块中本身的命名空间 6 7 命名空间的指向问题: 8 如果是import 模块名 9 这时候是模块名指向整个模块的命名空间 10 如果是from 模块名 import 变量名 11 这时候,是在本文件中创建了同名的变量名,来指向模块中的变量值 12 ‘‘‘ 13 14 命名空间的注意点
支持导入多个
from my_module import * 把my_module中所有的不是以下划线(_)开头的名字都导入到当前位置
大部分情况下我们的python程序不应该使用这种导入方式,因为*你不知道你导入什么名字,很有可能会覆盖掉你之前已经定义的名字。而且可读性极其的差,在交互式环境中导入时没有问题。
1 from my_module import * #将模块my_module中所有的名字都导入到当前名称空间 2 print(money) 3 print(read1) 4 print(read2) 5 print(change) 6 7 ‘‘‘ 8 执行结果: 9 from the my_module.py 10 <function read1 at 0x1012e8158> 11 <function read2 at 0x1012e81e0> 12 <function change at 0x1012e8268> 13 ‘‘‘
__all__对*的约束作用:
模块中没有__all__,import*时会导入所有变量名;如果有,只会导入__all__中存在的变量名
在my_module.py中新增一行。
思考:假如有两个模块a,b。我可不可以在a模块中import b ,再在b模块中import a?
实际上,这样循环导入会导致变量未能即时加载到内存,出现导入错误问题。
模块的加载和修改
考虑到性能的原因,每个模块只被导入一次,放入字典sys.modules中,如果你改变了模块的内容,你必须重启程序,python不支持重新加载或卸载之前导入的模块,
有的同学可能会想到直接从sys.modules中删除一个模块不就可以卸载了吗,注意了,你删了sys.modules中的模块对象仍然可能被其他程序的组件所引用,因而不会被清除。
也就是说模块一旦被导入,我们这时候再去修改模块中的内容,这个修改内容对当前执行文件是不会生效的,除非重启程序。
import time
import my_module
print(my_module.a)
time.sleep(10)
# 在这10时间内对模块my_module修改
print(my_module.a)
# 两次打印是一样的结果
我们可以通过模块的全局变量__name__来查看模块名:
作用:用来控制.py文件在不同的应用场景下执行不同的逻辑
if __name__ == ‘__main__‘:
注:__name__代表执行的文件名,如果在当前文件下执行,文件名是‘__main__‘,但是如果文件是被别人导入使用,文件名__name__是该文件的名字,也就是模块名。
python解释器在启动时会自动加载一些模块,可以使用sys.modules查看
在第一次导入某个模块时(比如my_module),会先检查该模块是否已经被加载到内存中(当前执行文件的名称空间对应的内存),如果有则直接引用
如果没有,解释器则会查找同名的内建模块,如果还没有找到就从sys.path给出的目录列表中依次寻找my_module.py文件。
所以总结模块的查找顺序是:内存中已经加载的模块->内置模块->sys.path路径中包含的模块
sys.path的初始化的值来自于:
The directory containing the input script (or the current directory when no file is specified).
PYTHONPATH (a list of directory names, with the same syntax as the shell variable PATH).
The installation-dependent default.
需要特别注意的是:我们自定义的模块名不应该与系统内置模块重名。虽然每次都说,但是仍然会有人不停的犯错。
在初始化后,python程序可以修改sys.path,路径放到前面的优先于标准库被加载。
注意:搜索时按照sys.path中从左到右的顺序查找,位于前的优先被查找,sys.path中还可能包含.zip归档文件和.egg文件,python会把.zip归档文件当成一个目录去处理。
#首先制作归档文件:
zip module.zip foo.py bar.py import sys sys.path.append(‘module.zip‘)
import foo,bar #也可以使用zip中目录结构的具体位置
sys.path.append(‘module.zip/lib/python‘)
#windows下的路径不加r开头,会语法错误 sys.path.insert(0,r‘C:\Users\Administrator\PycharmProjects\a‘)
扩展:
至于.egg文件是由setuptools创建的包,这是按照第三方python库和扩展时使用的一种常见格式,.egg文件实际上只是添加了额外元数据(如版本号,依赖项等)的.zip文件。
需要强调的一点是:只能从.zip文件中导入.py,.pyc等文件。使用C编写的共享库和扩展块无法直接从.zip文件中加载(此时setuptools等打包系统有时能提供一种规避方法),且从.zip中加载文件不会创建.pyc或者.pyo文件,因此一定要事先创建他们,来避免加载模块是性能下降。
1 #官网链接:https://docs.python.org/3/tutorial/modules.html#the-module-search-path 2 搜索路径: 3 当一个命名为my_module的模块被导入时 4 解释器首先会从内建模块中寻找该名字 5 找不到,则去sys.path中找该名字 6 7 sys.path从以下位置初始化 8 执行文件所在的当前目录 9 PTYHONPATH(包含一系列目录名,与shell变量PATH语法一样) 10 依赖安装时默认指定的 11 12 注意:在支持软连接的文件系统中,执行脚本所在的目录是在软连接之后被计算的,换句话说,包含软连接的目录不会被添加到模块的搜索路径中 13 14 在初始化后,我们也可以在python程序中修改sys.path,执行文件所在的路径默认是sys.path的第一个目录,在所有标准库路径的前面。这意味着,当前目录是优先于标准库目录的,需要强调的是:我们自定义的模块名不要跟python标准库的模块名重复,除非你是故意的,傻叉。
为了提高加载模块的速度,强调强调强调:提高的是加载速度而绝非运行速度。python解释器会在__pycache__目录中下缓存每个模块编译后的版本,格式为:module.version.pyc。通常会包含python的版本号。例如,在CPython3.3版本下,my_module.py模块会被缓存成__pycache__/my_module.cpython-33.pyc。这种命名规范保证了编译后的结果多版本共存。
Python检查源文件的修改时间与编译的版本进行对比,如果过期就需要重新编译。这是完全自动的过程。并且编译的模块是平台独立的,所以相同的库可以在不同的架构的系统之间共享,即pyc使一种跨平台的字节码,类似于JAVA火.NET,是由python虚拟机来执行的,但是pyc的内容跟python的版本相关,不同的版本编译后的pyc文件不同,2.5编译的pyc文件不能到3.5上执行,并且pyc文件是可以反编译的,因而它的出现仅仅是用来提升模块的加载速度的。
python解释器在以下两种情况下不检测缓存
1.如果是在命令行中被直接导入模块,则按照这种方式,每次导入都会重新编译,并且不会存储编译后的结果(python3.3以前的版本应该是这样)
2.如果源文件不存在,那么缓存的结果也不会被使用,如果想在没有源文件的情况下来使用编译后的结果,则编译后的结果必须在源目录下
提示:
内建函数dir是用来查找模块中定义的名字,返回一个有序字符串列表
如果没有参数,dir()列举出当前定义的名字
dir()不会列举出内建函数或者变量的名字,它们都被定义到了标准模块builtin中,可以列举出它们,
包是一种通过使用‘.模块名’来组织python模块名称空间的方式。
强调
- 创建一个包文件
1 import os 2 os.makedirs(‘glance/api‘) 3 os.makedirs(‘glance/cmd‘) 4 os.makedirs(‘glance/db‘) 5 l = [] 6 l.append(open(‘glance/__init__.py‘,‘w‘)) 7 l.append(open(‘glance/api/__init__.py‘,‘w‘)) 8 l.append(open(‘glance/api/policy.py‘,‘w‘)) 9 l.append(open(‘glance/api/versions.py‘,‘w‘)) 10 l.append(open(‘glance/cmd/__init__.py‘,‘w‘)) 11 l.append(open(‘glance/cmd/manage.py‘,‘w‘)) 12 l.append(open(‘glance/db/models.py‘,‘w‘)) 13 map(lambda f:f.close() ,l)
1 glance/ #Top-level package 2 3 ├── __init__.py #Initialize the glance package 4 5 ├── api #Subpackage for api 6 7 │ ├── __init__.py 8 9 │ ├── policy.py 10 11 │ └── versions.py 12 13 ├── cmd #Subpackage for cmd 14 15 │ ├── __init__.py 16 17 │ └── manage.py 18 19 └── db #Subpackage for db 20 21 ├── __init__.py 22 23 └── models.py
1 #文件内容 2 3 #policy.py中有: 4 def get(): 5 print(‘from policy.py‘) 6 7 #versions.py中有: 8 def create_resource(conf): 9 print(‘from version.py: ‘,conf) 10 11 #manage.py中有: 12 def main(): 13 print(‘from manage.py‘) 14 15 #models.py中有: 16 def register_models(engine): 17 print(‘from models.py: ‘,engine)
1.关于包相关的导入语句也分为import和from ... import ...两种,但是无论哪种,无论在什么位置,在导入时都必须遵循一个原则:凡是在导入时带点的,点的左边都必须是一个包,否则非法。可以带有一连串的点,如item.subitem.subsubitem,但都必须遵循这个原则。
2.对于导入后,在使用时就没有这种限制了,点的左边可以是包,模块,函数,类(它们都可以用点的方式调用自己的属性)。
3.对比import item 和from item import name的应用场景:如果我们想直接使用name那必须使用后者。
同级别的目录下,对包可以直接import导入
import glance.db.models glance.db.models.register_models(‘mysql‘)
注:导入glance.db.models中的 . 本质上是在拼路径,相当于导入glance/db路径下的models.py文件
需要注意的是from后import导入的模块,必须是明确的一个不能带点,否则会有语法错误,如:from a import b.c是错误语法
from glance.db import models
models.register_models(‘mysql‘)
from glance.db.models import register_models
register_models(‘mysql‘) # 以上方式可以 from glace.db import models.register_models # 这种导入方式直接报错
不管是哪种方式,只要是第一次导入包或者是包的任何其他部分,都会依次执行包下的__init__.py文件(我们可以在每个包的文件内都打印一行内容来验证一下),这个文件可以为空,但是也可以存放一些初始化包的代码。
在讲模块时,我们已经讨论过了从一个模块内导入所有*,此处我们研究从一个包导入所有*。
此处是想从包api中导入所有,实际上该语句只会导入包api下__init__.py文件中定义的名字,我们可以在这个文件中定义__all___:
#在__init__.py中定义 x=10 def func(): print(‘from api.__init.py‘) __all__=[‘x‘,‘func‘,‘policy‘]
此时我们在于glance同级的文件中执行from glance.api import *就导入__all__中的内容(versions仍然不能导入)。
我们的最顶级包glance是写给别人用的,然后在glance包内部也会有彼此之间互相导入的需求,这时候就有绝对导入和相对导入两种方式:
绝对导入:以glance作为起始
相对导入:用.或者..的方式最为起始(只能在一个包中使用,不能用于不同目录内)
例如:我们在glance/api/version.py中想要导入glance/cmd/manage.py
在glance/api/version.py #绝对导入 from glance.cmd import manage manage.main()
#相对导入 from ..cmd import manage manage.main()
测试结果:注意一定要在于glance同级的文件中测试,其次glance的上级目录路径必须在环境变量路径中,不然无法找到glance
注意:在使用pycharm时,有的情况会为你多做一些事情,这是软件相关的东西,会影响你对模块导入的理解,因而在测试时,一定要回到命令行去执行,模拟我们生产环境。
特别需要注意的是:可以用import导入内置或者第三方模块(已经在sys.path中),但是要绝对避免使用import来导入自定义包的子模块(没有在sys.path中),应该使用from... import ...的绝对或者相对导入,且包的相对导入只能用from的形式。
比如我们想在glance/api/versions.py中导入glance/api/policy.py,有的同学一抽这俩模块是在同一个目录下,十分开心的就去做了,它直接这么做
没错,我们单独运行version.py是一点问题没有的,运行version.py的路径搜索就是从当前路径开始的,于是在导入policy时能在当前目录下找到
但是你想啊,你子包中的模块version.py极有可能是被一个glance包同一级别的其他文件导入,比如我们在于glance同级下的一个test.py文件中导入version.py,如下
from glance.api import versions
‘‘‘ 执行结果:
ImportError: No module named ‘policy‘ ‘‘‘ ‘‘‘
分析: 此时我们导入versions在versions.py中执行 import policy需要找从sys.path也就是从当前目录找policy.py, 这必然是找不到的 ‘‘‘
1 glance/ 2 3 ├── __init__.py from glance import api 4 from glance import cmd 5 from glance import db 6 7 ├── api 8 9 │ ├── __init__.py from glance.api import policy 10 from glance.api import versions 11 12 │ ├── policy.py 13 14 │ └── versions.py 15 16 ├── cmd from glance.cmd import manage 17 18 │ ├── __init__.py 19 20 │ └── manage.py 21 22 └── db from glance.db import models 23 24 ├── __init__.py 25 26 └── models.py 27 28 绝对导入
1 glance/ 2 3 ├── __init__.py from . import api #.表示当前目录 4 from . import cmd 5 from . import db 6 7 ├── api 8 9 │ ├── __init__.py from . import policy 10 from . import versions 11 12 │ ├── policy.py 13 14 │ └── versions.py 15 16 ├── cmd from . import manage 17 18 │ ├── __init__.py 19 20 │ └── manage.py from ..api import policy 21 #..表示上一级目录,想再manage中使用policy中的方法就需要回到上一级glance目录往下找api包,从api导入policy 22 23 └── db from . import models 24 25 ├── __init__.py 26 27 └── models.py 28 29 相对导入
单独导入包名称时不会导入包中所有包含的所有子模块,如
#在与glance同级的test.py中 import glance glance.cmd.manage.main() ‘‘‘ 执行结果: AttributeError: module ‘glance‘ has no attribute ‘cmd‘ ‘‘‘
解决方法:
执行:#在于glance同级的test.py中 import glance glance.cmd.manage.main
千万别问:__all__不能解决吗,__all__是用于控制from...import *
1 #=============>bin目录:存放执行脚本 2 #start.py 3 import sys,os 4 5 BASE_DIR=os.path.dirname(os.path.dirname(os.path.abspath(__file__))) 6 sys.path.append(BASE_DIR) 7 8 from core import core 9 from conf import my_log_settings 10 11 if __name__ == ‘__main__‘: 12 my_log_settings.load_my_logging_cfg() 13 core.run() 14 15 #=============>conf目录:存放配置文件 16 #config.ini 17 [DEFAULT] 18 user_timeout = 1000 19 20 [egon] 21 password = 123 22 money = 10000000 23 24 [alex] 25 password = alex3714 26 money=10000000000 27 28 [yuanhao] 29 password = ysb123 30 money=10 31 32 #settings.py 33 import os 34 config_path=r‘%s\%s‘ %(os.path.dirname(os.path.abspath(__file__)),‘config.ini‘) 35 user_timeout=10 36 user_db_path=r‘%s\%s‘ %(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), 37 ‘db‘) 38 39 40 #my_log_settings.py 41 """ 42 logging配置 43 """ 44 45 import os 46 import logging.config 47 48 # 定义三种日志输出格式 开始 49 50 standard_format = ‘[%(asctime)s][%(threadName)s:%(thread)d][task_id:%(name)s][%(filename)s:%(lineno)d]‘ 51 ‘[%(levelname)s][%(message)s]‘ #其中name为getlogger指定的名字 52 53 simple_format = ‘[%(levelname)s][%(asctime)s][%(filename)s:%(lineno)d]%(message)s‘ 54 55 id_simple_format = ‘[%(levelname)s][%(asctime)s] %(message)s‘ 56 57 # 定义日志输出格式 结束 58 59 logfile_dir = r‘%s\log‘ %os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # log文件的目录 60 61 logfile_name = ‘all2.log‘ # log文件名 62 63 # 如果不存在定义的日志目录就创建一个 64 if not os.path.isdir(logfile_dir): 65 os.mkdir(logfile_dir) 66 67 # log文件的全路径 68 logfile_path = os.path.join(logfile_dir, logfile_name) 69 70 # log配置字典 71 LOGGING_DIC = { 72 ‘version‘: 1, 73 ‘disable_existing_loggers‘: False, 74 ‘formatters‘: { 75 ‘standard‘: { 76 ‘format‘: standard_format 77 }, 78 ‘simple‘: { 79 ‘format‘: simple_format 80 }, 81 }, 82 ‘filters‘: {}, 83 ‘handlers‘: { 84 #打印到终端的日志 85 ‘console‘: { 86 ‘level‘: ‘DEBUG‘, 87 ‘class‘: ‘logging.StreamHandler‘, # 打印到屏幕 88 ‘formatter‘: ‘simple‘ 89 }, 90 #打印到文件的日志,收集info及以上的日志 91 ‘default‘: { 92 ‘level‘: ‘DEBUG‘, 93 ‘class‘: ‘logging.handlers.RotatingFileHandler‘, # 保存到文件 94 ‘formatter‘: ‘standard‘, 95 ‘filename‘: logfile_path, # 日志文件 96 ‘maxBytes‘: 1024*1024*5, # 日志大小 5M 97 ‘backupCount‘: 5, 98 ‘encoding‘: ‘utf-8‘, # 日志文件的编码,再也不用担心中文log乱码了 99 }, 100 }, 101 ‘loggers‘: { 102 #logging.getLogger(__name__)拿到的logger配置 103 ‘‘: { 104 ‘handlers‘: [‘default‘, ‘console‘], # 这里把上面定义的两个handler都加上,即log数据既写入文件又打印到屏幕 105 ‘level‘: ‘DEBUG‘, 106 ‘propagate‘: True, # 向上(更高level的logger)传递 107 }, 108 }, 109 } 110 111 112 def load_my_logging_cfg(): 113 logging.config.dictConfig(LOGGING_DIC) # 导入上面定义的logging配置 114 logger = logging.getLogger(__name__) # 生成一个log实例 115 logger.info(‘It works!‘) # 记录该文件的运行状态 116 117 if __name__ == ‘__main__‘: 118 load_my_logging_cfg() 119 120 #=============>core目录:存放核心逻辑 121 #core.py 122 import logging 123 import time 124 from conf import settings 125 from lib import read_ini 126 127 config=read_ini.read(settings.config_path) 128 logger=logging.getLogger(__name__) 129 130 current_user={‘user‘:None,‘login_time‘:None,‘timeout‘:int(settings.user_timeout)} 131 def auth(func): 132 def wrapper(*args,**kwargs): 133 if current_user[‘user‘]: 134 interval=time.time()-current_user[‘login_time‘] 135 if interval < current_user[‘timeout‘]: 136 return func(*args,**kwargs) 137 name = input(‘name>>: ‘) 138 password = input(‘password>>: ‘) 139 if config.has_section(name): 140 if password == config.get(name,‘password‘): 141 logger.info(‘登录成功‘) 142 current_user[‘user‘]=name 143 current_user[‘login_time‘]=time.time() 144 return func(*args,**kwargs) 145 else: 146 logger.error(‘用户名不存在‘) 147 148 return wrapper 149 150 @auth 151 def buy(): 152 print(‘buy...‘) 153 154 @auth 155 def run(): 156 157 print(‘‘‘ 158 购物 159 查看余额 160 转账 161 ‘‘‘) 162 while True: 163 choice = input(‘>>: ‘).strip() 164 if not choice:continue 165 if choice == ‘1‘: 166 buy() 167 168 169 170 if __name__ == ‘__main__‘: 171 run() 172 173 #=============>db目录:存放数据库文件 174 #alex_json 175 #egon_json 176 177 #=============>lib目录:存放自定义的模块与包 178 #read_ini.py 179 import configparser 180 def read(config_file): 181 config=configparser.ConfigParser() 182 config.read(config_file) 183 return config 184 185 #=============>log目录:存放日志 186 #all2.log 187 [2017-07-29 00:31:40,272][MainThread:11692][task_id:conf.my_log_settings][my_log_settings.py:75][INFO][It works!] 188 [2017-07-29 00:31:41,789][MainThread:11692][task_id:core.core][core.py:25][ERROR][用户名不存在] 189 [2017-07-29 00:31:46,394][MainThread:12348][task_id:conf.my_log_settings][my_log_settings.py:75][INFO][It works!] 190 [2017-07-29 00:31:47,629][MainThread:12348][task_id:core.core][core.py:25][ERROR][用户名不存在] 191 [2017-07-29 00:31:57,912][MainThread:10528][task_id:conf.my_log_settings][my_log_settings.py:75][INFO][It works!] 192 [2017-07-29 00:32:03,340][MainThread:12744][task_id:conf.my_log_settings][my_log_settings.py:75][INFO][It works!] 193 [2017-07-29 00:32:05,065][MainThread:12916][task_id:conf.my_log_settings][my_log_settings.py:75][INFO][It works!] 194 [2017-07-29 00:32:08,181][MainThread:12916][task_id:core.core][core.py:25][ERROR][用户名不存在] 195 [2017-07-29 00:32:13,638][MainThread:7220][task_id:conf.my_log_settings][my_log_settings.py:75][INFO][It works!] 196 [2017-07-29 00:32:23,005][MainThread:7220][task_id:core.core][core.py:20][INFO][登录成功] 197 [2017-07-29 00:32:40,941][MainThread:7220][task_id:core.core][core.py:20][INFO][登录成功] 198 [2017-07-29 00:32:47,222][MainThread:7220][task_id:core.core][core.py:20][INFO][登录成功] 199 [2017-07-29 00:32:51,949][MainThread:7220][task_id:core.core][core.py:25][ERROR][用户名不存在] 200 [2017-07-29 00:33:00,213][MainThread:7220][task_id:core.core][core.py:20][INFO][登录成功] 201 [2017-07-29 00:33:50,118][MainThread:8500][task_id:conf.my_log_settings][my_log_settings.py:75][INFO][It works!] 202 [2017-07-29 00:33:55,845][MainThread:8500][task_id:core.core][core.py:20][INFO][登录成功] 203 [2017-07-29 00:34:06,837][MainThread:8500][task_id:core.core][core.py:25][ERROR][用户名不存在] 204 [2017-07-29 00:34:09,405][MainThread:8500][task_id:core.core][core.py:25][ERROR][用户名不存在] 205 [2017-07-29 00:34:10,645][MainThread:8500][task_id:core.core][core.py:25][ERROR][用户名不存在]
标签:log文件 inter 自动 etl word project install makedirs tar
原文地址:https://www.cnblogs.com/jiazeng/p/11594912.html