码迷,mamicode.com
首页 > 其他好文 > 详细

UOJ #276. 【清华集训2016】汽水

时间:2019-10-02 00:49:49      阅读:90      评论:0      收藏:0      [点我收藏+]

标签:head   add   turn   注意   分数   stdin   print   情况   简单   

TMD写了一篇博客竟然还不够清醒,那就再写一篇睡觉去了

首先一看题目就会发现这可以先套上个分数规划,即我们现在要最小化\(|\frac{\sum_{i=1}^{len} w_i}{len}-k|\)

考虑二分答案\(x\),顺便拆掉绝对值,即\(-x\le\frac{\sum_{i=1}^{len} w_i}{len}-k\le x\),发现其实只要同时满足:

\[\sum_{i=1}^{len} w_i-k+x \ge 0\]

\[\sum_{i=1}^{len} w_i-k-x \le 0\]

所以\(k\)不用管直接减掉即可,考虑就是找一条路径同时满足上述两个条件

然后又考虑到这是树上问题,我们考虑点分治,如果单看第一个条件很简单,只要把分治中心到所有点的边权和搞出来,找两条(或一条)长度大于\(0\)的即可

那么还有第二个要求怎么办,不难发现因为只用取两条链,因此我们可以在满足第一个的情况下最小化第二个的值,这个可以排序后two points扫一下解决

注意一下两条链都在同一子树内的情况要判一下,总体复杂度\(O(n\log^2 n)\)

#include<cstdio>
#include<iostream>
#include<algorithm>
#define int long long
#define RI register int
#define CI const int&
using namespace std;
typedef long double DB;
const int N=100005,INF=1e18;
const DB EPS=1e-3;
struct edge
{
    int to,nxt; DB v1,v2;
}e[N<<1]; int n,head[N],cnt,k,x,y,z;
inline void addedge(CI x,CI y,CI z)
{
    e[++cnt]=(edge){y,head[x],(DB)z-k,(DB)z-k}; head[x]=cnt;
    e[++cnt]=(edge){x,head[y],(DB)z-k,(DB)z-k}; head[y]=cnt;
}
class Point_Division_Solver
{
    private:
        struct data
        {
            int id; DB d1,d2;
            friend inline bool operator < (const data& A,const data& B)
            {
                return A.d1<B.d1;
            }
        }d[N]; int size[N],mx[N],ots,tot,rt; bool vis[N];
        #define to e[i].to
        inline void getrt(CI now,CI fa=0)
        {
            size[now]=1; mx[now]=0; for (RI i=head[now];i;i=e[i].nxt) if (to!=fa&&!vis[to])
            getrt(to,now),size[now]+=size[to],mx[now]=max(mx[now],size[to]);
            if ((mx[now]=max(mx[now],ots-size[now]))<mx[rt]) rt=now;
        }
        inline void travel(CI now,CI fr,CI fa,const DB& dis1,const DB& dis2)
        {
            d[++tot]=(data){fr,dis1,dis2}; for (RI i=head[now];i;i=e[i].nxt)
            if (to!=fa&&!vis[to]) travel(to,fr,now,dis1+e[i].v1,dis2+e[i].v2);
        }
        inline void insert(int& mi,int& smi,CI p)
        {
            if (d[p].d2<d[mi].d2) { if (d[p].id!=d[mi].id) smi=mi; mi=p; }
            else if (d[p].d2<d[smi].d2&&d[p].id!=d[mi].id) smi=p;
        }
        inline bool judge(CI rt)
        {
            RI i,pos,mi,smi; for (d[tot=1]=(data){rt,0,0},i=head[rt];i;i=e[i].nxt)
            if (!vis[to]) travel(to,to,rt,e[i].v1,e[i].v2); 
            sort(d+1,d+tot+1); d[0].d2=INF; for (i=pos=1;d[i].d1<0;++i,++pos);
            for (mi=smi=0;i<=tot;++i)
            {
                while (pos>1&&d[pos-1].d1+d[i].d1>=0) insert(mi,smi,--pos);
                if (d[mi].id!=d[i].id&&d[mi].d2+d[i].d2<=0) return 1;
                if (d[mi].id==d[i].id&&d[smi].d2+d[i].d2<=0) return 1;
                insert(mi,smi,i);
            }
            return 0;
        }
        inline bool solve(CI now)
        {
            vis[now]=1; if (judge(now)) return 1;
            for (RI i=head[now];i;i=e[i].nxt) if (!vis[to])
            {
                mx[rt=0]=INF; ots=size[to]; getrt(to);
                if (solve(rt)) return 1;
            }
            return 0;
        }
        #undef to
    public:
        inline bool check(const DB& x)
        {
            //printf("%lld : ",(int)x); 
            RI i; for (i=1;i<=n;++i) vis[i]=0;
            for (i=1;i<=cnt;++i) e[i].v1+=x,e[i].v2-=x;
            mx[rt=0]=INF; ots=n; getrt(1); bool flag=solve(rt);
            for (i=1;i<=cnt;++i) e[i].v1-=x,e[i].v2+=x; return flag;
        }
}PD;
signed main()
{
    //freopen("CODE.in","r",stdin); freopen("CODE.out","w",stdout);
    RI i; for (scanf("%lld%lld",&n,&k),i=1;i<n;++i)
    scanf("%lld%lld%lld",&x,&y,&z),addedge(x,y,z);
    DB l=0,r=1e13,mid; while (r-l>EPS)
    if (PD.check(mid=(l+r)/2.0)) r=mid; else l=mid;
    return printf("%lld",(int)(r)),0;
}

UOJ #276. 【清华集训2016】汽水

标签:head   add   turn   注意   分数   stdin   print   情况   简单   

原文地址:https://www.cnblogs.com/cjjsb/p/11616519.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!