码迷,mamicode.com
首页 > 其他好文 > 详细

社交网络分析与挖掘 第四课:信息传播模型

时间:2019-10-02 22:57:19      阅读:145      评论:0      收藏:0      [点我收藏+]

标签:ase   技术   from   fusion   ret   let   models   row   diff   

Information Diffusion Models

Information Diffusion Categories

技术图片

Influence Models (影响力模型)

  • Influence models model how users influence each other in a network.
  • Nodes are in two status:
    ==Inactive==:the nodes do not receive the information
    ==Active==:the nodes have received the information and can spread it to their neighbors

Independent Cascade (IC) 独立级联模型

  • Nodes activated at time t,have a single chance,at time step t+1,to activate their neighbors
  • Assume v is activated at time t,for any neighbor w of u,there is a probability p(vw) that node w gets activated at time t+1
    技术图片
  • IC Model:Algorithm
    技术图片
  • IC Model:Example
    技术图片

Linear Threshold (LT) 线性阈值模型

  • At each time step,the active nodes can influence the inactive nodes
  • Each node has an ==activation threshold==
  • An inactive node becomes active if the sum of influence degrees ==exceeds== its threshold
  • LT Model:Algorithm
    技术图片
  • LT Model:Example
    技术图片

Infection Models (感染性模型/病毒模型)

  • Infection Models, also called epidemic models, are
    used to describe the transmission of communicable
    ==disease== through individuals
  • Nodes are in three status:
    • ==Susceptible==:a susceptible node can potentially get
      infected by the disease
    • ==Infected==: an infected node has the chance of infecting
      susceptible neighbors.
    • ==Recovered==: These are nodes who have recovered from
      the disease and hence have complete or partial ==immunity== against the infection.

Susceptible-Infected (SI)

  • Two status of nodes:
    • Susceptible(S)
    • Infected(I)
  • How to infect
    - Once a node is infected,it stays infected forever.
    - At each discrete time step,each infected node tries to infect its susceptible(uninfected)neighbors independently with probability p.
    技术图片
    技术图片
  • SI Model:notations
    • N:size of the crowd,N=S(t)+I(t)
    • S(t):number of susceptible ones at time t
    • I(t):number of infected ones at time t
  • SI Model:Example
    技术图片

Susceptible-Infecte-Recovered (SIR)

  • Intuition:Some infected nodes may recover,and the recovered ones can no longer get infected and are no longer susceptible.
  • Three status of nodes:Susceptible(S),Infected(T),Recovered(R)
  • The infection status of a node changes
    技术图片
    β defines the probability of a success infection
    γ defines the recovering probability of an infected individual
  • SIR Model:Example
    技术图片

Susceptible-Infected-Susceptible (SIS)

  • Intuition:the infected nodes may recover,and the recovered nodes would become susceptible again
  • Two status of nodes:Susceptible(S),Infected(I)
  • The infection status of a node changes
    技术图片
    β defines the probability of a success infection
    γ defines the recovering probability of an infected individual
  • SIS Model:Example
    技术图片

Susceptible-Infected-Recovered-Susceptible (SIRS)

  • Intuition:the individuals who have recovered will lose immunity after a certain period of time and will become susceptible again.
  • The infection status of a node changes
    技术图片
    β defines the probability of a success infection
    γ defines the recovering probability of an infected individual
    λ defines the probability of losing immunity for a recovered node
  • SIRS Model:Example
    技术图片

以上内容出自小象学院

社交网络分析与挖掘 第四课:信息传播模型

标签:ase   技术   from   fusion   ret   let   models   row   diff   

原文地址:https://www.cnblogs.com/KisInfinite/p/11618538.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!