标签:style http io color os ar for sp on
题目大意:给定一个矩阵,每次查询矩阵中的最大值,并且判断该最大值是否在所查询的角落上。
解题思路:一开始用线段树,一维RMQ都超时了,然后换成了二维的RMQ,结果MLE,dp数组换成9?9就过了。
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn = 305;
int N, M, Q, g[maxn][maxn], dp[maxn][maxn][9][9];
void rmq_init(int n, int m) {
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++)
dp[i][j][0][0] = g[i][j];
}
for (int x = 0; (1<<x) <= n; x++)
for (int y = 0; (1<<y) <= m; y++)
if (x + y)
for (int i = 1; i + (1<<x) - 1 <= n; i++)
for (int j = 1; j + (1<<y) - 1 <= m; j++) {
if (x)
dp[i][j][x][y] = max(dp[i][j][x-1][y], dp[i+(1<<(x-1))][j][x-1][y]);
else
dp[i][j][x][y] = max(dp[i][j][x][y-1], dp[i][j+(1<<(y-1))][x][y-1]);
}
}
int rmq_query(int x1, int y1, int x2, int y2) {
int x = 0, y = 0;
while ((1<<(x+1)) <= x2 - x1 + 1) x++;
while ((1<<(y+1)) <= y2 - y1 + 1) y++;
x2 = x2 - (1<<x) + 1;
y2 = y2 - (1<<y) + 1;
return max( max(dp[x1][y1][x][y], dp[x2][y1][x][y]), max(dp[x1][y2][x][y], dp[x2][y2][x][y]));
}
int main () {
while (scanf("%d%d", &N, &M) == 2) {
for (int i = 1; i <= N; i++) {
for (int j = 1; j <= M; j++)
scanf("%d", &g[i][j]);
}
rmq_init(N, M);
scanf("%d", &Q);
int x1, y1, x2, y2;
while (Q--) {
scanf("%d%d%d%d", &x1, &y1, &x2, &y2);
int ans = rmq_query(x1, y1, x2, y2);
bool flag = false;
if (ans == g[x1][y1] || ans == g[x1][y2] || ans == g[x2][y1] || ans == g[x2][y2])
flag = true;
printf("%d %s\n", ans, flag ? "yes" : "no");
}
}
return 0;
}
标签:style http io color os ar for sp on
原文地址:http://blog.csdn.net/keshuai19940722/article/details/40512791