码迷,mamicode.com
首页 > 其他好文 > 详细

树链剖分(从入门到入土。)

时间:2019-10-03 16:12:30      阅读:81      评论:0      收藏:0      [点我收藏+]

标签:mat   put   max   std   知识   fat   维护   int   usaco   

前置知识:线段树,链式前向星,LCA,DFS序

树链剖分通常的操作:
1.x -> y 的路径上修改 2.x -> y 的路径上查询 3. 对于 x 的子树修改 4.对于 x 的子树查询。

一般还有换根操作。树剖也也可以做LCA。

树链剖分有两个DFS 这两个DFS就是把一棵树变成一个序列。 然后就可以用数据结构来维护了。

第一个DFS 用来求 \(fa\)(祖先节点) \(size\)(子树大小)\(son\)(重儿子) \(d\)(深度)
重儿子指的是\(size\)较大的儿子节点。
第二个DFS 用来求\(top\)(这条链上最顶端的点) \(id\)(编号)以及其他的赋值操作。 但是重儿子要先DFS。

const int N = 1e5 + 10 ;
struct node { int v , nxt ; } ;
node e[N << 1] ;
int head[N] , cnt = 0 ;
inline void Add(int u , int v) { e[++ cnt].v = v ; e[cnt].nxt = head[u] ; head[u] = cnt ; }
int size[N] , son[N] , d[N] ;
inline void Dfs1(int u) { size[u] = 1 ;
  for(register int i = head[u] ; i ; i = e[i].nxt) {
    int v = e[i].v ; if(v == fa[u]) continue ; // 防止无限递归。
    d[v] = d[u] + 1 , fa[v] = u ,  // 记录深度 以及父亲节点
Dfs1(v) ; size[u] += size[v] ; //算出子树大小
    if(size[v] > size[son[u]]) son[u] = v ; //得出u 的 重儿子是 son[u]
  }
}
int top[N] , id[N] , tot = 0 ;
inline void Dfs2(int u , int tp) { top[u] = tp , id[u] = ++ tot ;
  if(! son[u]) return ; Dfs2(son[u] , tp) ;
  for(register int i = head[u] ; i ; i = e[i].nxt) { int v = e[i].v ;
    if(v ^ fa[u] && v ^ son[u]) Dfs2(v , v) ;
  }
}

这样就算是一个大概的板子了 没有赋值…(赋值根据编号搞一搞就可以了 下面会讲。)

【模板】树链剖分

#include <bits/stdc++.h>
using namespace std ;
inline int read() { register int res = 0 ; register char c ;
#define gc c = getchar()
    while(isspace(gc)) ;
    while(res = (res << 1) + (res << 3) + (c & 15) , isdigit(gc)) ;
    return res ;
}
int n , m , r , p ;
const int N = 1000000 + 5 ;
struct E{ int v ;int nxt ; } ;
E edge[N << 1] ;
int a[N] ; int fa[N] ; int w[N] ; int id[N] ; int son[N] ;
int cnt = 0 ; int head[N] ; int Add[N << 2] , laz[N << 2] ;
int dep[N] , siz[N] , t[N] ;
inline void Add_Edge(register int u , register int v) { edge[++ cnt].v = v ; edge[cnt].nxt = head[u] ; head[u] = cnt ; return ; }//建边。
#define l(x) x << 1
#define r(x) x << 1 | 1
inline void Push_down(register int x , register int len) {
    laz[l(x)] += laz[x] ; laz[r(x)] += laz[x] ;
    Add[l(x)] += laz[x] * (len - (len >> 1)) ; Add[r(x)] += laz[x] * (len >> 1) ;
    Add[l(x)] %= p ; Add[r(x)] %= p ;
    laz[x] = 0 ; return ;
}
inline void Build(register int l , register int r , register int rt) {//建树
    if(l == r) { Add[rt] = a[l] ;  return ; }
    register int mid = l + r >> 1 ;
    Build(l , mid , l(rt)) ; Build(mid + 1 , r , r(rt)) ;
    Add[rt] = (Add[l(rt)] + Add[r(rt)]) % p ;
}
inline void Update(register int a , register int b , register int l  , register int r , register int rt , register int k) {//正常的线段树操作
    if(a <= l and r <= b) { laz[rt] += k ; Add[rt] += k * (r - l + 1) ; }
    else {
        if(laz[rt]) Push_down(rt , r - l + 1) ;
        register int mid = l + r >> 1 ;
        if(a <= mid) Update(a , b , l , mid , l(rt) , k) ;
        if(b > mid) Update(a , b , mid + 1 , r , r(rt) , k) ;
        Add[rt] = (Add[l(rt)] + Add[r(rt)]) % p ;
    }
}
int res = 0 ;
inline void query(register int a , register int b , register int  l , register int r , register int rt) {
    if(a <= l and r <= b) { res = (res + Add[rt]) % p ; return ; }
    else {
        if(laz[rt]) Push_down(rt , r - l + 1) ;
        register int mid = l + r >> 1 ;
        if(a <= mid) query(a , b , l , mid , l(rt)) ;
        if(b > mid) query(a , b , mid + 1 , r , r(rt)) ;
    }
}
inline int Query(register int a , register int b , register int l , register int r , register int rt) {//正常的线段树操作
    res = 0 ; query(a , b , l , r , rt) ;
    return res % p ;
}
inline void Upd_Range(register int x , register int y , register int k) {//链上修改
    while(t[x] != t[y]) {
        if(dep[t[x]] < dep[t[y]]) swap(x , y) ;
         Update(id[t[x]] , id[x] , 1 , n , 1 , k) ;
         x = fa[t[x]] ;
    }
    if(dep[x] > dep[y]) swap(x , y) ;
    Update(id[x] , id[y] , 1 , n , 1 , k) ;
}
inline int Query_Range(register int x , register int y) {//链上查询
    int ans = 0 ;
    while(t[x] != t[y]) {
        if(dep[t[x]] < dep[t[y]]) swap(x , y) ;
        ans += Query(id[t[x]] , id[x] , 1 , n , 1) ;
        x = fa[t[x]] ;
    }
    if(dep[x] > dep[y]) swap(x , y) ;
    ans += Query(id[x] , id[y] , 1 , n , 1) ;
    return ans % p ;
}
inline int Qson(register int x) { return Query(id[x] , id[x] + siz[x] - 1 , 1 , n , 1) ; } // 子树查询。
inline void Updson(register int x , register int k) { Update(id[x] , id[x] + siz[x] - 1 , 1 , n , 1 , k) ; return ; }
inline void Dfs1(register int x , register int f , register int deep) {
    dep[x] = deep ; fa[x] = f ; siz[x] = 1 ;
    int max_son = -1 ;
    for(register int i = head[x] ; i ; i = edge[i].nxt) {
        register int v = edge[i].v ;
        if(v == f) continue ;
        Dfs1(v , x , deep + 1) ;siz[x] += siz[v] ;
        if(siz[v] > max_son) max_son = siz[v] , son[x] = v ;
    }
}
int tot = 0 ;
inline void Dfs2(register int x , register int tf) {
    id[x] = ++ tot ; a[tot] = w[x] ; t[x] = tf ; // a 数组重新赋值
    if(! son[x]) return ;
    Dfs2(son[x] , tf) ;
    for(register int i = head[x] ; i ; i = edge[i].nxt) {
        int v = edge[i].v ;
        if(v == fa[x] or v == son[x]) continue ;
        Dfs2(v , v) ;
    }
}
signed main() {
    n = read() ; m = read() ; r = read() ; p = read() ;
    for(register int i = 1 ; i <= n ; i ++) w[i] = read() ;
    for(register int i = 1 ; i <= n - 1 ; i ++) {
        int u = read() , v = read() ;
        Add_Edge(u , v) ;
        Add_Edge(v , u) ;
    }
    Dfs1(r , 0 , 1) ; Dfs2(r , r) ; Build(1 , n , 1) ;
    for( ; m -- ; ) {
        register int opt = read() ;
        if(opt == 1) {
            register int x = read() , y = read() , k = read() ;
            Upd_Range(x , y , k % p) ;
        }
        if(opt == 2) {
            register int x = read() , y = read() ;
            printf("%d\n" , Query_Range(x , y)) ;
        }
        if(opt == 3) {
            register int x = read() , y = read() ;
            Updson(x , y) ;
        }
        if(opt == 4) { printf("%d\n" , Qson(read())) ; }
    }
    return 0 ;
}

[USACO11DEC]牧草种植Grass Planting

链上修改 单点查询。
对于这个题目 要修改的是边的权值。
这里有一个技巧 是 把边的权值下传给点 然后把最上面的点忽略掉。(易证 这样是可以的。)
然后进行基本的操作就可以了。

#include<bits/stdc++.h>
using namespace std ;
#define int long long
#define fi first
#define se second
#define pb push_back
inline int read() {
    register int x = 0 , f = 1 ;
    register char c = getchar() ;
    for( ; ! isdigit(c) ; c = getchar()) if(c == '-') f = -1 ;
    for( ; isdigit(c) ; c = getchar()) x = (x << 1) + (x << 3) + (c & 15) ;
    return x * f ;
}
template < typename T > inline bool cmax(T & x , T y) {
    return x < y ? (x = y) , 1 : 0 ;
}
template < typename T > inline bool cmin(T & x , T y) {
    return x > y ? (x = y) , 1 : 0 ;
}
template < typename T > inline bool cabs(T & x) {
    return x > 0 ? 1 : (x = - x) , 0 ;
}
inline int QP(int x , int y , int Mod) {
    int ans = 1 ;
    for( ; y ; y >>= 1 , x = (x * x) % Mod)
        if(y & 1) ans = (ans * x) % Mod ;
    return ans ;
}
int n , m ;
struct node {
  int v , nxt ;
} ;
const int N = 1e5 + 10 ;
node e[N << 1] ;
int head[N] , cnt = 0 ;
inline void Add(int u , int v) {
  e[++ cnt].v = v ;
  e[cnt].nxt = head[u] ;
  head[u] = cnt ;
  return ;
}
int fa[N] ;
int top[N] ;
int d[N] ;
int size[N] ;
int son[N] ;
int id[N] , idx = 0 ;
int a[N] ;
int sum[N << 2] ;
inline void build(int l , int r , int rt) {
  if(l == r) {
    sum[rt] = a[l] ;
    return ;
  }
  int mid = l + r >> 1 ;
  build(l , mid , rt << 1) ;
  build(mid + 1 , r , rt << 1 | 1) ;
}
int tag[N << 2] ;
inline void Push_down(int rt , int l , int r) {
  if(! tag[rt]) return ;
  tag[rt << 1] += tag[rt] ;
  tag[rt << 1 | 1] += tag[rt] ;
  int mid = l + r >> 1 ;
  sum[rt << 1] += tag[rt] * (mid - l + 1) ;
  sum[rt << 1 | 1] += tag[rt] * (r - mid) ;
  tag[rt] = 0 ;
  return ;
}
inline void Update(int a , int b , int l , int r , int rt) {
  if(a <= l && r <= b) { sum[rt] += (r - l + 1) ; tag[rt] ++ ; return ; }
  Push_down(rt , l , r) ;
  int mid = l + r >> 1 ;
  if(a <= mid) Update(a , b , l , mid , rt << 1) ;
  if(b > mid) Update(a , b , mid + 1 , r , rt << 1 | 1) ;
  sum[rt] = sum[rt << 1] + sum[rt << 1 | 1] ;
}
inline int Query(int a , int b , int l , int r , int rt) {
  if(a <= l && r <= b) return sum[rt] ;
  Push_down(rt , l , r) ;
  int mid = l + r >> 1 , ans = 0 ;
  if(a <= mid) ans += Query(a , b , l , mid , rt << 1) ;
  if(b > mid) ans += Query(a , b , mid + 1 , r , rt << 1 | 1) ;
  return ans ;
}
inline void Dfs(int u) {
  size[u] = 1 ;
  for(register int i = head[u] ; i ; i = e[i].nxt) {
    int v = e[i].v ;
    if(v == fa[u]) continue ;
    fa[v] = u ;
    d[v] = d[u] + 1 ;
    Dfs(v) ;
    size[u] += size[v] ;
    if(size[son[u]] < size[v]) son[u] = v ;
  }
}
inline void Dfs2(int u , int t) {
  top[u] = t ;
  a[idx] = 0 ;
  id[u] = ++ idx ;
  if(! son[u]) return ;
  Dfs2(son[u] , t) ;
  for(register int i = head[u] ; i ; i = e[i].nxt) {
    int v = e[i].v ;
    if(v ^ fa[u] && v ^ son[u]) Dfs2(v , v) ;
  }
}
inline void Change(int x , int y) {
  int fx = top[x] ;
  int fy = top[y] ;
  while(fx ^ fy) {
    if(d[fx] < d[fy]) swap(x , y) , swap(fx , fy) ;
    Update(id[fx] , id[x] , 1 , n , 1) ;
    x = fa[fx] ;
    fx = top[x] ;
  }
  if(d[x] > d[y]) swap(x , y) ;
  Update(id[x] + 1 , id[y] , 1 , n , 1) ;
}
inline int Query_Range(int x , int y) {
  int ans = 0 ;
  int fx = top[x] ;
  int fy = top[y] ;
  while(fx ^ fy) {
    if(d[fx] < d[fy]) swap(x , y) , swap(fx , fy) ;
    ans += Query(id[fx] , id[x] , 1 , n , 1) ;
    x = fa[fx] ;
    fx = top[x] ;
  }
  if(d[x] > d[y]) swap(x , y) ;
  ans += Query(id[x] + 1 , id[y] , 1 , n , 1) ;
  return ans ;
}
signed main() {
  n = read() ; m = read() ;
  for(register int i = 1 ; i <= n - 1 ; i ++) {
    int u = read() , v = read() ;
    Add(u , v) ;
    Add(v , u) ;
  }
  Dfs(1) ;
  Dfs2(1 , 0) ;
  build(1 , n , 1) ;
  for(register int i = 1 ; i <= m ; i ++) {
    register char c = getchar() ;
    while(c != 'P' && c != 'Q') c = getchar() ;
    int u = read() , v = read() ;
    if(c == 'P') Change(u , v) ;
    else printf("%lld\n" , Query_Range(u , v)) ;
  }
    return 0 ;
}

[USACO15DEC]最大流Max Flow

树剖是可以求LCA的 以这题为例。
这题是需要把压力给两个点 两个点加上1 然后这两个点的\(LCA\)减掉1 因为这个点也需要加上1 所以我们只能把这个1在\(fa_LCA\)减掉
这样递归到最底下 然后一直往上加 显然就是这棵树的权值

#include<bits/stdc++.h>
using namespace std ;
#define int long long
#define fi first
#define se second
#define pb push_back
inline int read() {
    register int x = 0 , f = 1 ;
    register char c = getchar() ;
    for( ; ! isdigit(c) ; c = getchar()) if(c == '-') f = -1 ;
    for( ; isdigit(c) ; c = getchar()) x = (x << 1) + (x << 3) + (c & 15) ;
    return x * f ;
}
template < typename T > inline bool cmax(T & x , T y) {
    return x < y ? (x = y) , 1 : 0 ;
}
template < typename T > inline bool cmin(T & x , T y) {
    return x > y ? (x = y) , 1 : 0 ;
}
template < typename T > inline bool cabs(T & x) {
    return x > 0 ? 1 : (x = - x) , 0 ;
}
inline int QP(int x , int y , int Mod) {
    int ans = 1 ;
    for( ; y ; y >>= 1 , x = (x * x) % Mod)
        if(y & 1) ans = (ans * x) % Mod ;
    return ans ;
}
int n ;
struct node {
  int v , nxt ;
} ;
const int N = 50000 + 5 ;
node e[N << 1] ;
int head[N] , cnt = 0 ;
inline void Add(int u , int v) {
  e[++ cnt].v = v ;
  e[cnt].nxt = head[u] ;
  head[u] = cnt ;
  return ;
}
int fa[N] ;
int size[N] ;
int son[N] ;
int top[N] ;
int d[N] ;
inline void Dfs(int u) {
  size[u] = 1 ;
  for(register int i = head[u] ; i ; i = e[i].nxt) {
    int v = e[i].v ;
    if(v == fa[u]) continue ;
    fa[v] = u ;
    d[v] = d[u] + 1 ;
    Dfs(v) ;
    size[u] += size[v];
    if(size[v] > size[son[u]]) son[u] = v ;
  }
}
inline void Dfs2(int u , int t) {
  top[u] = t ;
  if(! son[u]) return ;
  Dfs2(son[u] , t) ;
  for(register int i = head[u] ; i ; i = e[i].nxt) {
    int v = e[i].v ;
    if(v ^ fa[u] && v ^ son[u]) Dfs2(v , v) ;
  }
}
inline int Lca(int x , int y) {//树剖求LCA
  int fx = top[x] , fy = top[y] ;
  while(fx ^ fy) {
    if(d[fx] < d[fy]) swap(x , y) , swap(fx , fy) ;
    x = fa[fx] ;
    fx = top[x] ;
  }
  if(d[x] > d[y]) swap(x , y) ;
  return x ;
}
int ad[N] ;
int ans = 0 ;
inline void Getans(int u , int father) { // 不断往下找 然后更新答案
  for(register int i = head[u] ; i ; i = e[i].nxt) {
    int v = e[i].v ;
    if(v == father) continue ;
    Getans(v , u) ;
    ad[u] += ad[v] ;
  }
  ans = max(ans , ad[u]) ;
}
signed main() {
  n = read() ; int k = read() ;
  for(register int i = 1 ; i <= n - 1 ;  i ++) {
    int u = read() , v = read() ;
    Add(u , v) ;
    Add(v , u) ;
  }
  Dfs(1) ;
  Dfs2(1 , 0) ;
  for(register int i = 1 ; i <= k ; i ++) {
    int u = read() , v = read() ;
    int lca = Lca(u , v) ;
    ad[u] ++ ;
    ad[v] ++ ;
    ad[lca] -- ;
    ad[fa[lca]] -- ;
  }// 树上差分
  Getans(1 , 0) ;
  printf("%lld" , ans) ;
    return 0 ;
}

[HEOI2016/TJOI2016]树

技巧题
这题是可以在链上二分的 但是主流做法好像不是这个?
链上二分要注意是反过来的。。

#include<bits/stdc++.h>
using namespace std ;
#define int long long
#define fi first
#define se second
#define pb push_back
inline int read() {
    register int x = 0 , f = 1 ;
    register char c = getchar() ;
    for( ; ! isdigit(c) ; c = getchar()) if(c == '-') f = -1 ;
    for( ; isdigit(c) ; c = getchar()) x = (x << 1) + (x << 3) + (c & 15) ;
    return x * f ;
}
template < typename T > inline bool cmax(T & x , T y) {
    return x < y ? (x = y) , 1 : 0 ;
}
template < typename T > inline bool cmin(T & x , T y) {
    return x > y ? (x = y) , 1 : 0 ;
}
template < typename T > inline bool cabs(T & x) {
    return x > 0 ? 1 : (x = - x) , 0 ;
}
inline int QP(int x , int y , int Mod) {
    int ans = 1 ;
    for( ; y ; y >>= 1 , x = (x * x) % Mod)
        if(y & 1) ans = (ans * x) % Mod ;
    return ans ;
}
int n , m ;
struct node {
    int v , nxt ;
} ;
const int N = 1e5 + 10 ;
node e[N << 1] ;
int head[N] , cnt = 0 ;
inline void Add(int u , int v) { e[++ cnt].v = v , e[cnt].nxt = head[u] , head[u] = cnt ; }
int fa[N] , size[N] , son[N] , d[N] ;
inline void Dfs(int u) { size[u] = 1 ; for(register int i = head[u] ; i ; i = e[i].nxt) {
        int v = e[i].v ; if(v == fa[u]) continue ;
        d[v] = d[u] + 1 , fa[v] = u , Dfs(v) , size[u] += size[v] ;
        if(size[v] > size[son[u]]) son[u] = v ;
    }
}
int top[N] , id[N] , idx = 0 , f[N] ;
inline void Dfs2(int u , int t) { id[u] = ++ idx , top[u] = t , f[idx] = u ;
    if(! son[u]) return ; Dfs2(son[u] , t) ;
    for(register int i = head[u] ; i ; i = e[i].nxt) {
        int v = e[i].v ; if(v ^ fa[u] && v ^ son[u]) Dfs2(v , v) ;
    }
}
int sum[N << 2] ;
inline void build(int l , int r , int rt){
    if(l == r) { sum[rt] = 0 ; return ; }
    int mid = l + r >> 1 ; build(l , mid , rt << 1) , build(mid + 1 , r , rt << 1 | 1) ;
}
inline void upd(int x , int l , int r , int rt) {
    if(l == r) { sum[rt] = 1 ; return ; }
    int mid = l + r >> 1 ;
    if(x <= mid) upd(x , l , mid , rt << 1) ; else upd(x , mid + 1 , r , rt << 1 | 1) ;
    sum[rt] = sum[rt << 1] + sum[rt << 1 | 1] ;
}
inline int query(int a , int b , int l , int r , int rt) {
    if(a <= l && r <= b) { return sum[rt] ; }
    int mid = l + r >> 1 , ans = 0 ;
    if(a <= mid) ans += query(a , b , l , mid , rt << 1) ;
    if(b > mid) ans += query(a , b ,  mid + 1 , r , rt << 1 | 1) ;
    return ans ;
}
inline int chk(int l , int r) { // 二分找答案
    if(l == r) return l ;
    int mid = l + r >> 1 ;
    if(query(mid + 1 , r , 1 , n , 1)) return chk(mid + 1 , r) ; // 反过来。
    else return chk(l , mid) ;
}
inline int Find(int x , int y = 1) { // 求答案 因为最近的点一定是在 1 ~ x 的这条路径上。
    int fx = top[x] , fy = top[y] ;
    while(fx ^ fy) {
        if(d[fx] < d[fy]) swap(x , y) , swap(fx , fy) ;
        int q = query(id[fx] , id[x] , 1 , n , 1) ;
        if(q) return chk(id[fx] , id[x]) ;
        else { x = fa[fx] , fx = top[x] ; continue ; }
    }
    if(d[x] > d[y]) swap(x , y) ;
    return chk(id[x] , id[y]) ;
}
signed main() {
    n = read() ; m = read() ;
    for(register int i = 1 ; i <= n - 1 ; i ++) { int u = read() , v = read() ; Add(u , v) , Add(v , u) ;}
    Dfs(1) , Dfs2(1 , 0) , build(1 , n , 1) ;
    for(register int i = 1 ; i <= m ; i ++) {
        register char c = getchar() ;
        while(c != 'C' && c != 'Q') c = getchar() ;
        int x = read() ;
        if(c == 'C') upd(id[x] , 1 , n , 1) ;
        if(c == 'Q') printf("%lld\n" , f[Find(x)]) ;
    }
    return 0 ;
}

[国家集训队]旅游
sol

//Isaunoya
#include<bits/stdc++.h>
using namespace std ;
inline int read() {
    register int x = 0 ;
    register int f = 1 ;
    register char c = getchar() ;
    for( ; ! isdigit(c) ; c = getchar()) if(c == '-') f = -1 ;
    for( ; isdigit(c) ; c = getchar()) x = (x << 1) + (x << 3) + (c & 15) ;
    return x * f ;
}
int st[105] ;
template < typename T > inline void write(T x , char c = '\n') {
    int tp = 0 ;
    if(x == 0) return (void) puts("0") ;
    if(x < 0) putchar('-') , x = -x ;
    for( ; x ; x /= 10) st[++ tp] = x % 10 ;
    for( ; tp ; tp --) putchar(st[tp] + '0') ;
    putchar(c) ;
}
//#define Online_Judge
//#define int long long
#define swap(x , y) x ^= y ^= x ^= y
int n ;
const static int N = 200000 + 5 ;
int a[N] ;
namespace SegTree {
    struct Node {
        int mn ; // the min
        int mx ; // the max
        int add ; // the sum
        int lazy ; // the sign
    };
    Node t[N << 2] ;
    inline void Push_down(int rt) {
        if(t[rt].lazy) {
            t[rt << 1].add = - t[rt << 1].add ;
            t[rt << 1 | 1].add = - t[rt << 1 | 1].add ;
            t[rt << 1].lazy ^= 1 ;
            t[rt << 1 | 1].lazy ^= 1 ;
            swap(t[rt << 1].mx , t[rt << 1].mn) ;
            swap(t[rt << 1 | 1].mx , t[rt << 1 | 1].mn) ;
            t[rt << 1].mx = - t[rt << 1].mx ;
            t[rt << 1].mn = - t[rt << 1].mn ;
            t[rt << 1 | 1].mx = - t[rt << 1 | 1].mx ;
            t[rt << 1 | 1].mn = - t[rt << 1 | 1].mn ;
            t[rt].lazy = 0 ;
        }
        return ;
    }
    //==============================================push_down
    inline void Push_Up(int rt) {
        t[rt].add = t[rt << 1].add + t[rt << 1 | 1].add ;
        t[rt].mx = max(t[rt << 1].mx , t[rt << 1 | 1].mx) ;
        t[rt].mn = min(t[rt << 1].mn , t[rt << 1 | 1].mn) ;
        return ;
    }
    //==============================================push_up
    inline void build(int l , int r , int rt) {
        if(l == r) {
            t[rt].add = t[rt].mn = t[rt].mx = a[l] ;
            return ;
        }
        int mid = l + r >> 1 ;
        build(l , mid , rt << 1) ;
        build(mid + 1 , r , rt << 1 | 1) ;
        Push_Up(rt) ;
    }
    //==============================================build
    inline void Add(int x , int l , int r , int rt , int val) {
        if(l == r) {
            t[rt].add = t[rt].mn = t[rt].mx = val ;
            return ;
        }
        int mid = l + r >> 1 ;
        Push_down(rt) ;
        if(x <= mid) Add(x , l , mid , rt << 1 , val) ;
        else Add(x , mid + 1 , r , rt << 1 | 1 , val) ;
        Push_Up(rt) ;
    }
    //==============================================change x - > val
    inline void Change(int a , int b , int l , int r , int rt) {
        if(a > r || b < l) return ;
        if(a <= l && r <= b) {
            t[rt].add = - t[rt].add ;
            t[rt].lazy ^= 1 ;
            swap(t[rt].mx , t[rt].mn) ;
            t[rt].mx = - t[rt].mx ;
            t[rt].mn = - t[rt].mn ;
            return ;
        }
        int mid = l + r >> 1 ;
        Push_down(rt) ;
        Change(a , b , l , mid , rt << 1) ;
        Change(a , b , mid + 1 , r , rt << 1 | 1) ;
        Push_Up(rt) ;
    }
    //===============================================change x - > -x
    inline int Sum(int a , int b , int l , int r , int rt) {
        if(a > r || b < l) return 0 ;
        if(a <= l && r <= b) return t[rt].add ;
        int mid = l + r >> 1 ;
        Push_down(rt) ;
        int ans = 0 ;
        ans += Sum(a , b , l , mid , rt << 1 ) ;
        ans += Sum(a , b , mid + 1 , r , rt << 1 | 1) ;
        Push_Up(rt) ;
        return ans ;
    }
    //====================================================== a - > b sum
    inline int Min(int L , int R , int l , int r , int rt) {
        if(L > r || R < l) return INT_MAX ;
        if(L <= l && r <= R) return t[rt].mn ;
        int ans = INT_MAX ;
        int mid = l + r >> 1 ;
        Push_down(rt) ;
        if(L <= mid) ans = min(ans , Min(L , R , l , mid , rt << 1)) ;
        if(R > mid) ans = min(ans , Min(L , R, mid + 1 , r , rt << 1 | 1)) ;
        Push_Up(rt) ;
        return ans ;
    }
    //====================================================== a - > b min
    inline int Max(int L , int R , int l , int r , int rt) {
        if(L > r || R < l) return INT_MIN ;
        if(L <= l && r <= R) return t[rt].mx ;
        int ans = INT_MIN ;
        int mid = l + r >> 1 ;
        Push_down(rt) ;
        if(L <= mid) ans = max(ans , Max(L , R , l , mid , rt << 1)) ;
        if(R > mid) ans = max(ans , Max(L , R, mid + 1 , r , rt << 1 | 1)) ;
        Push_Up(rt) ;
        return ans ;
    }
    //====================================================== a - > b max
}
//===========================================================SegTree
namespace SLPF {
    struct node {
        int v ;
        int nxt ;
        int w ;
    };
    int fa[N] ; int id[N] ; int son[N] ;
    int size[N] ; int d[N] ; int top[N] ;
    int fst[N] ;
    node e[N << 1] ;
    int tot = 0 ;
    int head[N] ; int cnt = 0 ;
    inline void Add_Edge(int u , int v , int w) {
        e[++ cnt].v = v ;
        e[cnt].nxt = head[u] ;
        e[cnt].w = w ;
        head[u] = cnt ;
        return ;
    }
    inline void Dfs1(int u) {
        size[u] = 1 ;
        for(register int i = head[u] ; i ; i = e[i].nxt) {
            int v = e[i].v ;
            if(v ^ fa[u]) {
                d[v] = d[u] + 1 ;
                fa[v] = u ;
                fst[v] = e[i].w ;
                Dfs1(v) ;
                size[u] += size[v] ;
                if(size[v] > size[son[u]]) son[u] = v ;
            }
        }
    }
    inline void Dfs2(int u , int t) {
        id[u] = ++ tot ;
        top[u] = t ;
        a[tot] = fst[u] ;
        if(son[u]) Dfs2(son[u] , t) ;
        for(register int i = head[u] ; i ; i = e[i].nxt) {
            int v = e[i].v ;
            if(v ^ fa[u] && v ^ son[u]) Dfs2(v , v) ;
        }
    }
    //========================================================Dfs1 && Dfs2

    inline void Change_Range(int x , int y) {
        int fx = top[x] ;
        int fy = top[y] ;
        while(fx ^ fy) {
            if(d[fx] < d[fy]) swap(x , y) , swap(fx , fy) ;
            SegTree::Change(id[fx] , id[x] , 1 , tot , 1) ;
            x = fa[fx] ;
            fx = top[x] ;
        }
        if(id[x] > id[y]) swap(x , y) ;
        SegTree::Change(id[x] + 1 , id[y] , 1 , tot , 1) ;
    }
    inline int Query_Sum(int x , int y) {
        int fx = top[x] ;
        int fy = top[y] ;
        int ans = 0 ;
        while(fx ^ fy) {
            if(d[fx] < d[fy]) swap(x , y) , swap(fx , fy) ;
            ans += SegTree::Sum(id[fx] , id[x] , 1 , tot , 1) ;
            x = fa[fx] ;
            fx = top[x] ;
        }
        if(id[x] > id[y]) swap(x , y) ;
        ans += SegTree::Sum(id[x] + 1 , id[y] , 1 , tot , 1) ;
        return ans ;
    }
    inline int Query_Min(int x , int y) {
        int fx = top[x] ;
        int fy = top[y] ;
        int ans = INT_MAX ;
        while(fx ^ fy) {
            if(d[fx] < d[fy]) swap(x , y) , swap(fx , fy) ;
            ans = min(ans , SegTree::Min(id[fx] , id[x] , 1 , tot , 1)) ;
            x = fa[fx] ;
            fx = top[x] ;
        }
        if(id[x] > id[y]) swap(x , y) ;
        ans = min(ans , SegTree::Min(id[x] + 1 , id[y] , 1 , tot , 1)) ;
        return ans ;
    }
    inline int Query_Max(int x , int y) {
        int fx = top[x] ;
        int fy = top[y] ;
        int ans = INT_MIN ;
        while(fx ^ fy) {
            if(d[fx] < d[fy]) swap(x , y) , swap(fx , fy) ;
            ans = max(ans , SegTree::Max(id[fx] , id[x] , 1 , tot , 1)) ;
            x = fa[fx] ;
            fx = top[x] ;
        }
        if(id[x] > id[y]) swap(x , y) ;
        ans = max(ans , SegTree::Max(id[x] + 1 , id[y] , 1 , tot , 1)) ;
        return ans ;
    }
}
using namespace SLPF ;
inline int getopt() {
    string s = "" ;
    register char c = getchar() ;
    while(isspace(c)) c = getchar() ;
    while(! isspace(c)) {
        s += c ;
        c = getchar() ;
    }
    if(s == "C") return 0 ;
    if(s == "N") return 1 ;
    if(s == "SUM") return 2 ;
    if(s == "MAX") return 3 ;
    if(s == "MIN") return 4 ;
}
signed main() {
#ifdef Online_Judge
    freopen("testdata.in" , "r" , stdin) ;
    freopen("testdata2.out" , "w" , stdout) ;
#endif
    n = read() ;
    for(register int i = 1 ; i <= n - 1 ; i ++) {
        int u = read() , v = read() , w = read() ;
        u ++ , v ++ ;
        Add_Edge(u , v , w) ;
        Add_Edge(v , u , w) ;
    }
    Dfs1(1) ;
    Dfs2(1 , 0) ;
    SegTree::build(1 , n , 1) ;
    for(register int t = read() ; t -- ; ) {
        int opt = getopt() ;
//      write(opt) ;
        if(opt == 0) {
            int x = read() , y = read() ;
            x ++ ;
            SegTree::Add(id[x] , 1 , n , 1 , y) ;
        }
        if(opt == 1) {
            int x = read() , y = read() ;
            x ++ , y ++ ;
            Change_Range(x , y) ;
        }
        if(opt == 2) {
            int x = read() , y = read() ;
            x ++ , y ++ ;
            write(Query_Sum(x , y)) ;
        }
        if(opt == 3) {
            int x = read() , y = read() ;
            x ++ , y ++ ;
            write(Query_Max(x , y)) ;
        }
        if(opt == 4) {
            int x = read() , y = read() ;
            x ++ , y  ++ ;
            write(Query_Min(x , y)) ;
        }
    }
    return 0 ;
}

[ZJOI2008]树的统计

与模板题差不多。。

//Isaunoya
#include <bits/stdc++.h>
using namespace std ;
inline int read() { register int x = 0 ; register int f = 1 ; register char c = getchar() ;
    for( ; ! isdigit(c) ; c = getchar()) if(c == '-') f = -1 ;
    for( ; isdigit(c) ; c = getchar()) x = (x << 1) + (x << 3) + (c & 15) ;
    return x * f ;
} int st[105] ;
template < typename T > inline void write(T x , char c = '\n') { int tp = 0 ;
    if(x == 0) return (void) puts("0") ;
    if(x < 0) putchar('-') , x = -x ;
    for( ; x ; x /= 10) st[++ tp] = x % 10 ;
    for( ; tp ; tp --) putchar(st[tp] + '0') ;
    putchar(c) ;
}
int n , m , r , p ;
const int N = 10000000 + 5 ;
struct E{ int v ;int nxt ; } ;
E edge[N << 1] ;
int a[N] ; int fa[N] ; int w[N] ; int id[N] ; int son[N] ;
int cnt = 0 ; int head[N] ; int Add[N << 2] , laz[N << 2] ;
int mx[N << 2] ;
int dep[N] , siz[N] , t[N] ;
inline void Add_Edge(register int u , register int v) { edge[++ cnt].v = v ; edge[cnt].nxt = head[u] ; head[u] = cnt ; return ; }
#define l(x) x << 1
#define r(x) x << 1 | 1
inline void Push_down(register int x , register int len) {
    laz[l(x)] += laz[x] ; laz[r(x)] += laz[x] ;
    Add[l(x)] += laz[x] * (len - (len >> 1)) ; Add[r(x)] += laz[x] * (len >> 1) ;
    Add[l(x)] %= p ; Add[r(x)] %= p ;
    laz[x] = 0 ; return ;
}
inline void Build(register int l , register int r , register int rt) {
    if(l == r) { mx[rt] = Add[rt] = a[l] ;  return ; }
    register int mid = l + r >> 1 ;
    Build(l , mid , l(rt)) ; Build(mid + 1 , r , r(rt)) ;
    Add[rt] = (Add[l(rt)] + Add[r(rt)])  ;
    mx[rt] = max(mx[rt << 1] , mx[rt << 1 | 1]) ;
}
inline void Update(register int a , register int b , register int l  , register int r , register int rt , register int k) {
    if(a <= l and r <= b) { laz[rt] += k ; Add[rt] += k * (r - l + 1) ; }
    else {
        if(laz[rt]) Push_down(rt , r - l + 1) ;
        register int mid = l + r >> 1 ;
        if(a <= mid) Update(a , b , l , mid , l(rt) , k) ;
        if(b > mid) Update(a , b , mid + 1 , r , r(rt) , k) ;
        Add[rt] = (Add[l(rt)] + Add[r(rt)])  ;
        mx[rt] = max(mx[rt << 1] , mx[rt << 1 | 1]) ;
    }
}
inline void upd(int x , int l , int r , int rt , int v) {
    if(l == r) {
        mx[rt] = Add[rt] = v ;
        return ;
    }
    int mid = l + r >> 1 ;
    if(x <= mid) upd(x , l , mid , rt << 1 , v) ;
    else upd(x , mid + 1 , r , rt << 1 | 1 , v) ;
    Add[rt] = (Add[l(rt)] + Add[r(rt)])  ;
    mx[rt] = max(mx[rt << 1] , mx[rt << 1 | 1]) ;
}
int res = 0 ;
inline void query(register int a , register int b , register int  l , register int r , register int rt) {
    if(a <= l and r <= b) { res = (res + Add[rt])  ; return ; }
    else {
        if(laz[rt]) Push_down(rt , r - l + 1) ;
        register int mid = l + r >> 1 ;
        if(a <= mid) query(a , b , l , mid , l(rt)) ;
        if(b > mid) query(a , b , mid + 1 , r , r(rt)) ;
    }
}
inline int Query(register int a , register int b , register int l , register int r , register int rt) {
    res = 0 ; query(a , b , l , r , rt) ;
    return res  ;
}
inline int Query_Max(int a , int b , int l , int r , int rt) {
    if(a <= l && r <= b) return mx[rt] ;
    int mid = l + r >> 1 ;
    int ans = INT_MIN ;
    if(a <= mid) ans = max(ans , Query_Max(a , b , l , mid , rt << 1)) ;
    if(b > mid) ans = max(ans , Query_Max(a , b , mid + 1 , r , rt << 1 | 1)) ;
    return ans ;
}
inline void Upd_Range(register int x , register int y , register int k) {
    while(t[x] != t[y]) {
        if(dep[t[x]] < dep[t[y]]) swap(x , y) ;
         Update(id[t[x]] , id[x] , 1 , n , 1 , k) ;
         x = fa[t[x]] ;
    }
    if(dep[x] > dep[y]) swap(x , y) ;
    Update(id[x] , id[y] , 1 , n , 1 , k) ;
}
inline int Query_Range(register int x , register int y) {
    int ans = 0 ;
    while(t[x] != t[y]) {
        if(dep[t[x]] < dep[t[y]]) swap(x , y) ;
        ans += Query(id[t[x]] , id[x] , 1 , n , 1) ;
        x = fa[t[x]] ;
    }
    if(dep[x] > dep[y]) swap(x , y) ;
    ans += Query(id[x] , id[y] , 1 , n , 1) ;
    return ans  ;
}
inline int Query_Max_Range(register int x , register int y) {
    int ans = INT_MIN ;
    while(t[x] != t[y]) {
        if(dep[t[x]] < dep[t[y]]) swap(x , y) ;
        ans = max(ans , Query_Max(id[t[x]] , id[x] , 1 , n , 1)) ;
        x = fa[t[x]] ;
    }
    if(dep[x] > dep[y]) swap(x , y) ;
    ans = max(ans , Query_Max(id[x] , id[y] , 1 , n , 1)) ;
    return ans  ;
}
inline int Qson(register int x) { return Query(id[x] , id[x] + siz[x] - 1 , 1 , n , 1) ; }
inline void Updson(register int x , register int k) { Update(id[x] , id[x] + siz[x] - 1 , 1 , n , 1 , k) ; return ; }
inline void Dfs1(register int x , register int f , register int deep) {
    dep[x] = deep ; fa[x] = f ; siz[x] = 1 ;
    int max_son = -1 ;
    for(register int i = head[x] ; i ; i = edge[i].nxt) {
        register int v = edge[i].v ;
        if(v == f) continue ;
        Dfs1(v , x , deep + 1) ;siz[x] += siz[v] ;
        if(siz[v] > max_son) max_son = siz[v] , son[x] = v ;
    }
}
int tot = 0 ;
inline void Dfs2(register int x , register int tf) {
    id[x] = ++ tot ; a[tot] = w[x] ; t[x] = tf ;
    if(! son[x]) return ;
    Dfs2(son[x] , tf) ;
    for(register int i = head[x] ; i ; i = edge[i].nxt) {
        int v = edge[i].v ;
        if(v == fa[x] or v == son[x]) continue ;
        Dfs2(v , v) ;
    }
}
inline int getopt() {
    string s = "" ; register char c = getchar() ;
    while(isspace(c)) c = getchar() ;
    while(! isspace(c)) {
        s += c ;
        c = getchar() ;
    }
    if(s == "CHANGE") return 0 ;
    if(s == "QMAX") return 1 ;
    if(s == "QSUM") return 2 ; 
}
signed main() {
    n = read() ; 
    for(register int i = 1 ; i <= n - 1 ; i ++) {
        int u = read() , v = read() ;
        Add_Edge(u , v) ;
        Add_Edge(v , u) ;
    }for(register int i = 1 ; i <= n ; i ++) w[i] = read() ;
    m = read() ; r = 1 ;
    Dfs1(r , 0 , 1) ; Dfs2(r , r) ; Build(1 , n , 1) ;
    for( ; m -- ; ) {
        int opt = getopt() ;
//        cout  << opt ;
        int u = read() , v = read() ;
        if(opt == 0) {
            upd(id[u] , 1 , n , 1 , v) ;
        }
        if(opt == 1) {
            write(Query_Max_Range(u , v)) ;
        }
        if(opt == 2) {
            write(Query_Range(u , v)) ;
        }
    }
    return 0 ;
}

上面都是用线段树维护的序列 其实树剖不一定要用 线段树 只要是数据结构都可以
比如说ODT 什么的 如果不会ODT也没什么关系 你会用线段树当然更好 ODT 是可以卡掉的 但是在树上问题 通常不容易卡掉。

[NOI2015]软件包管理器
因为 软件之间是有依赖关系的

  • 每次安装软件 就把根节点到x软件路径上的值全部变为1
  • 同理 每次卸载软件 就把x以及它的子树的值变为0
//Isaunoya
#include<bits/stdc++.h>
using namespace std ;
inline int read() { register int x = 0 ; register int f = 1 ; register char c = getchar() ;
    for( ; ! isdigit(c) ; c = getchar()) if(c == '-') f = -1 ;
    for( ; isdigit(c) ; c = getchar()) x = (x << 1) + (x << 3) + (c & 15) ;
    return x * f ;
} int st[105] ;
template < typename T > inline void write(T x , char c = '\n') { int tp = 0 ;
    if(x == 0) return (void) puts("0") ;
    if(x < 0) putchar('-') , x = -x ;
    for( ; x ; x /= 10) st[++ tp] = x % 10 ;
    for( ; tp ; tp --) putchar(st[tp] + '0') ;
    putchar(c) ;
}
//#define Online_Judge

struct node {
    int l ; int r ;
    mutable int val ;
    bool operator < (const node & x) const {
        return l < x.l ;
    }
};
set < node > s ;

#define slt set < node > :: iterator
inline slt Split(int pos) {
    slt it = s.lower_bound((node) {pos}) ;
    if(it != s.end() && it -> l == pos) return it ;
    -- it ;
    int l = it -> l ;
    int r = it -> r ;
    int val = it -> val ;
    s.erase(it) ;
    s.insert({l , pos - 1 , val}) ;
    return s.insert({pos , r , val}).first ;
}
inline int Assign(int l , int r , int val) {
    slt it2 = Split(r + 1) ;
    slt it1 = Split(l) ;
    int sum = 0 ;
    int sum2 = (r - l + 1) * val  ;
    for(slt it = it1 ; it != it2 ; it ++) sum += (it -> r - it -> l + 1) * it -> val ;
    s.erase(it1 , it2) ;
    s.insert({l , r , val}) ;
    return abs(sum - sum2) ;
}
int n ;
struct Node {
    int v ;
    int nxt ;
};
const int N = 1e5 + 10 ;
Node e[N << 1] ;
int cnt = 0 ;
int head[N] ;
inline void Add(int u , int v) {
    e[++ cnt].v = v ;
    e[cnt].nxt = head[u] ;
    head[u] = cnt ;
    return ;
}
int top[N] ;
int id[N] ; int size[N] ;
int d[N] ; int idx = 0 ;
int fa[N] ; int son[N] ;
inline void Dfs1(int u) {
    size[u] = 1 ;
    for(register int i = head[u] ; i ; i = e[i].nxt ) {
        int v = e[i].v ;
        if(v == fa[u]) continue ;
        d[v] = d[u] + 1 ;
        fa[v] = u ;
        Dfs1(v) ;
        size[u] += size[v] ;
        if(size[v] > size[son[u]]) son[u] = v ;
    }
    return ;
}
inline void Dfs2(int u , int t) {
    id[u] = ++ idx ;
    top[u] = t ;
    if(! son[u]) return ;
    Dfs2(son[u] , t) ;
    for(register int i = head[u] ; i ; i = e[i].nxt) {
        int v = e[i].v ;
        if((v ^ fa[u]) && (v ^ son[u])) Dfs2(v , v) ;
    }
}
inline int getopt() { string s = "" ;
    register char c = getchar() ;
    while(isspace(c)) c = getchar() ;
    while(! isspace(c)) {
        s += c ;
        c = getchar() ;
    }
    if(s == "install") return 1 ;
    if(s == "uninstall") return 0 ;
}
inline int Change_Range(int x , int y) {
    int fx = top[x] ;
    int fy = top[y] ;
    int ans = 0 ;
    while(fx ^ fy) {
        if(d[fx] < d[fy]) swap(x , y) , swap(fx , fy) ;
        ans += Assign(id[fx] , id[x] , 1) ;
        x = fa[fx] ;
        fx = top[x] ;
    }
    if(id[x] > id[y]) swap(x , y) ;
    ans += Assign(id[x] , id[y] , 1) ;
    return ans ;
}
inline int Uninstall(int x) {
    return Assign(id[x] , id[x] + size[x] - 1 , 0) ;
}
signed main() {
#ifdef Online_Judge
    freopen("testdata.in" , "r" , stdin) ;
    freopen("testdata2.out" , "w" , stdout) ;
#endif
    n = read() ;
    s.insert({1 , n + 1 , 0}) ;
    for(register int i = 2 ; i <= n ; i ++) {
        int u = read() ; u ++ ;
        Add(u , i) ;
        Add(i , u) ;
    }
    Dfs1(1) ;
    Dfs2(1 , 1) ;
    for(register int t = read() ; t -- ; ) {
        int opt = getopt() ;
        if(opt == 1) {
            int x = read() ; x ++ ;
            write(Change_Range(x , 1)) ;
        }
        if(opt == 0) {
            int x = read() ; x ++ ;
            write(Uninstall(x)) ;
        }
    }
    return 0 ;
}

[SDOI2011]染色

这题也是个ODT
不过不同的是 这题是区间的颜色数量 连续的颜色算一次 这样的话 线段树还是很难维护的。(应该也可以。)

//Isaunoya
#include<bits/stdc++.h>
using namespace std ;
inline int read() {
    register int x = 0 ;
    register int f = 1 ;
    register char c = getchar() ;
    for( ; ! isdigit(c) ; c = getchar()) if(c == '-') f = -1 ;
    for( ; isdigit(c) ; c = getchar()) x = (x << 1) + (x << 3) + (c & 15) ;
    return x * f ;
}
int st[105] ;
template < typename T > inline void write(T x , char c = '\n') {
    int tp = 0 ;
    if(x == 0) return (void) puts("0") ;
    if(x < 0) putchar('-') , x = -x ;
    for( ; x ; x /= 10) st[++ tp] = x % 10 ;
    for( ; tp ; tp --) putchar(st[tp] + '0') ;
    putchar(c) ;
}
//#define Online_Judge

struct node {
    int l ;
    int r ;
    mutable int val ;
    bool operator < (const node & x) const {
        return l < x.l ;
    }
};
set < node > s ;

#define slt set < node > :: iterator
inline slt Split(int pos) {
    slt it (-- s.upper_bound({pos})) ;
    if(it -> l == pos) return it ;
    int l = it -> l ;
    int r = it -> r ;
    int val = it -> val ;
    s.erase(it) ;
    s.insert({l , pos - 1 , val}) ;
    return s.insert({pos , r , val}).first ;
}
inline void Assign(int l , int r , int val) {
    slt itr = Split(r + 1) ;
    slt itl = Split(l) ;
    s.erase(itl , itr) ;
    s.insert({l , r , val}) ;
    return ;
}
int n ;
struct Node {
    int v ;
    int nxt ;
};
const int N = 1e5 + 10 ;
int a[N] ;
Node e[N << 1] ;
int cnt = 0 ;
int head[N] ;
inline void Add(int u , int v) {
    e[++ cnt].v = v ;
    e[cnt].nxt = head[u] ;
    head[u] = cnt ;
    return ;
}
int top[N] ;
int id[N] ;
int size[N] ;
int d[N] ;
int idx = 0 ;
int fa[N] ;
int son[N] ;
int fst[N] ;
inline void Dfs1(int u) {
    size[u] = 1 ;
    for(register int i = head[u] ; i ; i = e[i].nxt ) {
        int v = e[i].v ;
        if(v == fa[u]) continue ;
        d[v] = d[u] + 1 ;
        fa[v] = u ;
        Dfs1(v) ;
        size[u] += size[v] ;
        if(size[v] > size[son[u]]) son[u] = v ;
    }
    return ;
}
inline void Dfs2(int u , int t) {
    id[u] = ++ idx ;
    top[u] = t ;
    a[idx] = fst[u] ;
    if(! son[u]) return ;
    Dfs2(son[u] , t) ;
    for(register int i = head[u] ; i ; i = e[i].nxt) {
        int v = e[i].v ;
        if((v ^ fa[u]) && (v ^ son[u])) Dfs2(v , v) ;
    }
}
inline int getopt() {
    register char c = getchar() ;
    while(isspace(c)) c = getchar() ;
    return c == 'Q' ;
}
inline void Change_Range(int x , int y , int val) {
    int fx = top[x] ;
    int fy = top[y] ;
    while(fx ^ fy) {
        if(d[fx] < d[fy]) swap(x , y) , swap(fx , fy) ;
        Assign(id[fx] , id[x] , val) ;
        x = fa[fx] ;
        fx = top[x] ;
    }
    if(id[x] > id[y]) swap(x , y) ;
    Assign(id[x] , id[y] , val) ;
}
#define swap(x , y) x ^= y ^= x ^= y
inline int Query_Range(int x , int y) {
    int ans = 0 ;
    int lasta = 0 ;
    int lastb = 0 ;
    int fx = top[x] ;
    int fy = top[y] ;
    slt itl , itr ;
    while(fx ^ fy) {
        if(d[fx] > d[fy]) {
            itr = Split(id[x] + 1) , itl = Split(id[fx]) ;
            for(-- itr ; ; --itr) {
                if(itr -> val ^ lasta)
                    lasta = itr -> val , ++ ans ;
                if(itr == itl) break;
            }
            x = fa[fx] ;
            fx = top[x] ;
        } else {
//          swap(x , y) , swap(fx , fy) ;
            itr = Split(id[y] + 1) , itl = Split(id[fy]) ;
            for(-- itr ; ; --itr) {
                if(itr -> val ^ lastb)
                    lastb = itr -> val , ++ ans ;
                if(itr == itl) break;
            }
            y = fa[fy] ;
            fy = top[y] ;
        }
    }
    if(id[x] > id[y]) {
        itr = Split(id[x] + 1) , itl = Split(id[y]) ;
        for(-- itr ; ; --itr) {
            if(itr -> val ^ lasta)
                lasta = itr -> val , ++ ans ;
            if(itr == itl) break;
        }
    } else {
        itr = Split(id[y] + 1) , itl = Split(id[x]) ;
        for(-- itr ; ; --itr) {
            if(itr -> val ^ lastb)
                lastb = itr -> val , ++ ans ;
            if(itr == itl) break;
        }
    }
    return ans - (lasta == lastb) ;
}
signed main() {
#ifdef Online_Judge
    freopen("testdata.in" , "r" , stdin) ;
    freopen("testdata2.out" , "w" , stdout) ;
#endif
    n = read() ;
    int t = read() ;
    for(register int i = 1 ; i <= n ; i ++) fst[i] = read() ;
    for(register int i = 2 ; i <= n ; i ++) {
        int u = read() ;
        int v = read() ;
        Add(u , v) ;
        Add(v , u) ;
    }
    Dfs1(1) ;
    Dfs2(1 , 1) ;
    for(register int i = 1 ; i <= n ; i ++) s.insert({i , i , a[i]}) ;
    for( ; t -- ; ) {
        int opt = getopt() ;
        if(opt == 1) {
            int x = read() , y = read() ;
            write(Query_Range(x , y));
        }
        if(opt == 0) {
            int x = read() , y = read() , val = read() ;
            Change_Range(x , y , val) ;
        }
    }
    return 0 ;
}

[HAOI2015]树上操作

  • 操作 1 :把某个节点 x 的点权增加 a 。
  • 操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 a 。
  • 操作 3 :询问某个节点 x 到根的路径中所有点的点权和。

很显然是个板子题啊。

// Isaunoya
#include <bits/stdc++.h>
using namespace std ;
inline int read() { register int res = 0 ; register int f = 1 ; register char c ;
#define gc c = getchar()
    while(isspace(gc)) ; if(c == '-') f = -1 , gc ;
    while(res = (res << 1) + (res << 3) + (c & 15) , isdigit(gc)) ;
    return res * f ;
}
#define int long long
int n , m , r ;
const int N = 1000000 + 5 ;
struct E{ int v ;int nxt ; } ;
E edge[N << 1] ;
int a[N] ; int fa[N] ; int w[N] ; int id[N] ; int son[N] ;
int cnt = 0 ; int head[N] ; int Add[N << 2] , laz[N << 2] ;
int dep[N] , siz[N] , t[N] ;
inline void Add_Edge(register int u , register int v) { edge[++ cnt].v = v ; edge[cnt].nxt = head[u] ; head[u] = cnt ; return ; }
#define l(x) x << 1
#define r(x) x << 1 | 1
inline void Push_down(register int x , register int len) {
    laz[l(x)] += laz[x] ; laz[r(x)] += laz[x] ;
    Add[l(x)] += laz[x] * (len - (len >> 1)) ; Add[r(x)] += laz[x] * (len >> 1) ;
    laz[x] = 0 ; return ;
}
inline void Build(register int l , register int r , register int rt) {
    if(l == r) { Add[rt] = a[l] ;  return ; }
    register int mid = l + r >> 1 ;
    Build(l , mid , l(rt)) ; Build(mid + 1 , r , r(rt)) ;
    Add[rt] = (Add[l(rt)] + Add[r(rt)])  ;
}
inline void Update(register int a , register int b , register int l  , register int r , register int rt , register int k) {
    if(a <= l and r <= b) { laz[rt] += k ; Add[rt] += k * (r - l + 1) ; }
    else {
        if(laz[rt]) Push_down(rt , r - l + 1) ;
        register int mid = l + r >> 1 ;
        if(a <= mid) Update(a , b , l , mid , l(rt) , k) ;
        if(b > mid) Update(a , b , mid + 1 , r , r(rt) , k) ;
        Add[rt] = (Add[l(rt)] + Add[r(rt)])  ;
    }
}
int res = 0 ;
inline void query(register int a , register int b , register int  l , register int r , register int rt) {
    if(a <= l and r <= b) { res = (res + Add[rt])  ; return ; }
    else {
        if(laz[rt]) Push_down(rt , r - l + 1) ;
        register int mid = l + r >> 1 ;
        if(a <= mid) query(a , b , l , mid , l(rt)) ;
        if(b > mid) query(a , b , mid + 1 , r , r(rt)) ;
    }
}
inline int Query(register int a , register int b , register int l , register int r , register int rt) {
    res = 0 ; query(a , b , l , r , rt) ;
    return res  ;
}
inline void Upd_Range(register int x , register int y , register int k) {
    while(t[x] != t[y]) {
        if(dep[t[x]] < dep[t[y]]) swap(x , y) ;
         Update(id[t[x]] , id[x] , 1 , n , 1 , k) ;
         x = fa[t[x]] ;
    }
    if(dep[x] > dep[y]) swap(x , y) ;
    Update(id[x] , id[y] , 1 , n , 1 , k) ;
}
inline int Query_Range(register int x , register int y) {
    int ans = 0 ;
    while(t[x] != t[y]) {
        if(dep[t[x]] < dep[t[y]]) swap(x , y) ;
        ans += Query(id[t[x]] , id[x] , 1 , n , 1) ;
        x = fa[t[x]] ;
    }
    if(dep[x] > dep[y]) swap(x , y) ;
    ans += Query(id[x] , id[y] , 1 , n , 1) ;
    return ans ;
}
inline int Qson(register int x) { return Query(id[x] , id[x] + siz[x] - 1 , 1 , n , 1) ; }
inline void Updson(register int x , register int k) { Update(id[x] , id[x] + siz[x] - 1 , 1 , n , 1 , k) ; return ; }
inline void Dfs1(register int x , register int f , register int deep) {
    dep[x] = deep ; fa[x] = f ; siz[x] = 1 ;
    int max_son = -1 ;
    for(register int i = head[x] ; i ; i = edge[i].nxt) {
        register int v = edge[i].v ;
        if(v == f) continue ;
        Dfs1(v , x , deep + 1) ;siz[x] += siz[v] ;
        if(siz[v] > max_son) max_son = siz[v] , son[x] = v ;
    }
}
int tot = 0 ;
inline void Dfs2(register int x , register int tf) {
    id[x] = ++ tot ; a[tot] = w[x] ; t[x] = tf ;
    if(! son[x]) return ;
    Dfs2(son[x] , tf) ;
    for(register int i = head[x] ; i ; i = edge[i].nxt) {
        int v = edge[i].v ;
        if(v == fa[x] or v == son[x]) continue ;
        Dfs2(v , v) ;
    }
}
signed main() {
    n = read() ; m = read() ; r = 1 ;
    for(register int i = 1 ; i <= n ; i ++) w[i] = read() ;
    for(register int i = 1 ; i <= n - 1 ; i ++) {
        int u = read() , v = read() ;
        Add_Edge(u , v) ;
        Add_Edge(v , u) ;
    }
    Dfs1(r , 0 , 1) ; Dfs2(r , r) ; Build(1 , n , 1) ;
    for( ; m -- ; ) {
        register int opt = read() ;
        if(opt == 1) {
            int x = read() , a = read() ;
            Upd_Range(x , x , a) ;
        }
        if(opt == 2) {
            int x = read() , z = read() ;
            Updson(x , z) ;
        }
        if(opt == 3) {
            int x = read() ;
            printf("%lld\n" , Query_Range(x , r)) ;
        }
    }
    return 0 ;
}

树链剖分(从入门到入土。)

标签:mat   put   max   std   知识   fat   维护   int   usaco   

原文地址:https://www.cnblogs.com/Isaunoya/p/11619823.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!