标签:破坏 过程 oid 地址 数据结构 gif ++ 元素 html
if(val[x]>val[y]||(val[x]==val[y]&&x>y))//性质一
{
swap(x,y);
}
ch[x][1]=merge(ch[x][1],y);//合并右子树和y
dis[x]=dis[ch[x][1]]+1;//性质三
fa[x]=fa[ch[x][0]]=fa[ch[x][1]]=x;//更新fa
return x;
int merge(int x,int y){
if(!x||!y)
{
return x+y;
}
if(val[x]>val[y]||(val[x]==val[y]&&x>y))//性质一
{
swap(x,y);
}
ch[x][1]=merge(ch[x][1],y);//合并右子树和y
if(dis[ch[x][0]]<dis[ch[x][1]])//性质二
{
swap(ch[x][0],ch[x][1]);
}
fa[x]=fa[ch[x][0]]=fa[ch[x][1]]=x;//更新fa
dis[x]=dis[ch[x][1]]+1;//性质三
return x;
}
void pop(int x){
val[x]=-1;
fa[ch[x][0]]=ch[x][0];
fa[ch[x][1]]=ch[x][1];
fa[x]=merge(ch[x][0],ch[x][1]);
}
xx=getfa(x);printf("%d\n",val[xx]);
pop(xx);
1.罗马游戏
2.Joint Stacks
在学OI的前期,我们接触了一种数据结构,叫做堆。它资瓷插入一个元素,查询最小/大元素和删除最小/大元素。然后就发现STL的priority \ queuepriority queue可以直接用,非常的方便。
但是有时候题目让我们资瓷两个堆的合并,这样priority \ queuepriority queue就不行了(但是pb_ds还是可以的)。这样我们就要手写左偏树。
什么是左偏树呢?首先,从名字上看,它是一棵树。其实它还是一棵二叉树。它的节点上存4个值:左、右子树的地址,权值,距离。
权值就是堆里面的值。距离表示这个节点到它子树里面最近的叶子节点的距离。叶子节点距离为0。
既然是一种特殊的数据结构,那肯定有它自己的性质。左偏树有几个性质(小根为例)。
性质一:节点的权值小于等于它左右儿子的权值。
堆的性质,很好理解。
性质二:节点的左儿子的距离不小于右儿子的距离。
在写平衡树的时候,我们是确保它的深度尽量的小,这样访问每个节点都很快。但是左偏树不需要这样,它的目的是快速提取最小节点和快速合并。所以它并不平衡,而且向左偏。但是距离和深度不一样,左偏树并不意味着左子树的节点数或是深度一定大于右子树。
性质三:节点的距离等于右儿子的距离+1。
没什么好说的= =
性质四:一个n个节点的左偏树距离最大为log(n+1)-1log(n+1)−1
这个怎么证明呢?我们可以一点一点来。
若左偏树的距离为一定值,则节点数最少的左偏树是完全二叉树。
节点最少的话,就是左右儿子距离一样,这就是完全二叉树了。
若一棵左偏树的距离为k,则这棵左偏树至少有2^{k+1}-12k+1−1个节点。
距离为k的完全二叉树高度也是k,节点数就是2^{k+1}-12k+1−1。
这样就可以证明性质四了。因为n>=2^{k+1}-1n>=2k+1−1,所以k<=log(n+1)-1k<=log(n+1)−1
有了性质,我们来讲讲它的操作。
<center></center>
我们假设A的根节点小于等于B的根节点(否则交换A,B),把A的根节点作为新树C的根节点,剩下的事就是合并A的右子树和B了。
<center></center>
合并了A的右子树和B之后,A的右子树的距离可能会变大,当A的右子树 的距离大于A的左子树的距离时,性质二会被破坏。在这种情况下,我们只须要交换A的右子树和左子树。
而且因为A的右子树的距离可能会变,所以要更新A的距离=右儿子距离+1。这样就合并完了。
<center>
C:\Users\THTF\Desktop\eNDLF.gif(动图!!)
</center>
代码
int merge(int x,int y){
if (x==0 || y==0)
return x+y;
if (val[x]>val[y] || (val[x]==val[y] && x>y))
swap(x,y);
ch[x][1]=merge(ch[x][1],y);
f[ch[x][1]]=x;
if (dis[ch[x][0]]<dis[ch[x][1]])
swap(ch[x][0],ch[x][1]);
dis[x]=dis[ch[x][1]]+1;
return x;
}
我们来分析一下复杂度。我们可以看出每次我们都把它的右子树放下去合并。因为一棵树的距离取决于它右子树的距离(性质三),所以拆开的过程不会超过它的距离。根据性质四,不会超过log(n_x+1)+log(n_y+1)-2log(nx?+1)+log(ny?+1)−2,复杂度就是O(\log n_x+\log n_y)O(lognx?+logny?)
插入一个节点,就是把一个点和一棵树合并起来。
因为其中一棵树只有一个节点,所以插入的效率是O(\log n)O(logn)
因为根是最小/大点,所以可以直接把根的两个儿子合并起来。
因为只合并了一次,所以效率也是O(\log n)O(logn)。
代码
#include <cstdio>#define N 100010using namespace std;int inline read(){
int x=0,f=1;char ch=getchar();
while(ch<‘0‘||ch>‘9‘){if(ch==‘-‘)f=-1;ch=getchar();}
while(ch>=‘0‘&&ch<=‘9‘){x=x*10+ch-‘0‘;ch=getchar();}
return x*f;
}void swap(int &x,int &y){int t=x;x=y,y=t;}int ch[N][2],val[N],dis[N],f[N],n,m;int merge(int x,int y){
if (x==0 || y==0)
return x+y;
if (val[x]>val[y] || (val[x]==val[y] && x>y))
swap(x,y);
ch[x][1]=merge(ch[x][1],y);
f[ch[x][1]]=x;
if (dis[ch[x][0]]<dis[ch[x][1]])
swap(ch[x][0],ch[x][1]);
dis[x]=dis[ch[x][1]]+1;
return x;
}int getf(int x){
while(f[x]) x=f[x];
return x;
}void pop(int x){
val[x]=-1;
f[ch[x][0]]=f[ch[x][1]]=0;
merge(ch[x][0],ch[x][1]);
}
main()
{
n=read(),m=read();
dis[0]=-1;
for (int i=1;i<=n;i++)
val[i]=read();
for (int i=1;i<=m;i++)
{
int com=read();
if (com==1)
{
int x=read(),y=read();
if (val[x]==-1 || val[y]==-1)
continue;
if (x==y)
continue;
int fx=getf(x),fy=getf(y);
merge(fx,fy);
}
else
{
int x=read();
if (val[x]==-1)
puts("-1");
else
{
int y=getf(x);
printf("%d\n",val[y]);
pop(y);
}
}
}
}
标签:破坏 过程 oid 地址 数据结构 gif ++ 元素 html
原文地址:https://www.cnblogs.com/aprincess/p/11621470.html