标签:space bit scanf 输入 线段树 个数 ret tor turn
比特山是比特镇的飙车圣地。在比特山上一共有$n$个广场,编号依次为$1$到$n$,这些广场之间通过$n−1$条双向车道直接或间接地连接在一起,形成了一棵树的结构。
因为每条车道的修建时间以及建筑材料都不尽相同,所以可以用两个数字$l_i,r_i$量化地表示一条车道的承受区间,只有当汽车以不小于$l_i$且不大于$r_i$的速度经过这条车道时,才不会对路面造成伤害。
$Byteasar$最近新买了一辆跑车,他想在比特山飙一次车。$Byteasar$计划选择两个不同的点$S,T$,然后在它们树上的最短路径上行驶,且不对上面任意一条车道造成伤害。
$Byteasar$不喜欢改变速度,所以他会告诉你他的车速。为了挑选出最合适的车速,$Byteasar$一共会向你询问$m$次。请帮助他找到一条合法的道路,使得路径上经过的车道数尽可能多。
第一行包含两个正整数$n,m$,表示广场的总数和询问的总数。
接下来$n−1$行,每行四个正整数$u_i,v_i,l_i,r_i$,表示一条连接$u_i$和$v_i$的双向车道,且承受区间为$[l_i,r_i]$。
接下来$m$行,每行一个正整数$q_i$,分别表示每个询问的车速。
输出$m$行,每行一个整数,其中第$i$行输出车速为$q_i$时的最长路径的长度,如果找不到合法的路径则输出$0$。
我们将速度$l,r$看成区间,那么我们就是要找速度是$q_i$时所能经过多少连续区间。
现将问题离线。
那么可以用线段树维护边,对于线段树上区间$l,r$,我们将边的这条边压进去。
然后我们在线段树上往上合并每一条边,用并查集维护是否已经连到了一起,合并时一共分为$6$种情况;注意并查集不能路径压缩,要按秩合并,因为我们在合并的同时还要维护信息。
对于合并时求距离,还是用$LCA$,但是倍增$LCA$常数较大,建议用树链剖分。
时间复杂度:$\Theta(n\log^2n)$。
期望得分:$100$分。
实际得分:$100$分。
#include<bits/stdc++.h>
#define L(x) x<<1
#define R(x) x<<1|1
using namespace std;
struct rec{int nxt,to;}e[150000];
struct node{int x,y,v;pair<int,int> p;}sta[70001];
int head[70001],cnt;
int n,m,t;
int f[70001],dep[70001];
pair<int,int> st[70001];
int fa[70001],depth[70001],top[70001],size[70001],son[70001];
vector<pair<int,int> > pos[500000];
int ans[70001];
void add(int x,int y)
{
e[++cnt].nxt=head[x];
e[cnt].to=y;
head[x]=cnt;
}
int find(int x){return x==f[x]?x:find(f[x]);}
void dfs1(int x)
{
size[x]=1;
for(int i=head[x];i;i=e[i].nxt)
if(e[i].to!=fa[x])
{
fa[e[i].to]=x;
depth[e[i].to]=depth[x]+1;
dfs1(e[i].to);
size[x]+=size[e[i].to];
if(size[e[i].to]>size[son[x]])son[x]=e[i].to;
}
}
void dfs2(int x,int tp)
{
top[x]=tp;
if(!son[x])return;
dfs2(son[x],tp);
for(int i=head[x];i;i=e[i].nxt)
if(!top[e[i].to])dfs2(e[i].to,e[i].to);
}
int LCA(int x,int y)
{
while(top[x]!=top[y])
{
if(depth[top[x]]<depth[top[y]])swap(x,y);
x=fa[top[x]];
}
return depth[x]<depth[y]?x:y;
}
int dis(int x,int y){return depth[x]+depth[y]-(depth[LCA(x,y)]<<1);}
void build(int x,int l,int r,int L,int R,int u,int v)
{
if(r<L||R<l)return;
if(L<=l&&r<=R){pos[x].push_back(make_pair(u,v));return;}
int mid=(l+r)>>1;
build(L(x),l,mid,L,R,u,v);
build(R(x),mid+1,r,L,R,u,v);
}
void merge(int x,int y,int &flag)
{
x=find(x);
y=find(y);
int res=0,d;
pair<int,int> mzz;
if(res<(d=dis(st[x].first,st[x].second)))res=d,mzz=make_pair(st[x].first,st[x].second);
if(res<(d=dis(st[x].first,st[y].first)))res=d,mzz=make_pair(st[x].first,st[y].first);
if(res<(d=dis(st[x].first,st[y].second)))res=d,mzz=make_pair(st[x].first,st[y].second);
if(res<(d=dis(st[x].second,st[y].first)))res=d,mzz=make_pair(st[x].second,st[y].first);
if(res<(d=dis(st[x].second,st[y].second)))res=d,mzz=make_pair(st[x].second,st[y].second);
if(res<(d=dis(st[y].first,st[y].second)))res=d,mzz=make_pair(st[y].first,st[y].second);
flag=max(flag,res);
if(dep[x]<dep[y])swap(x,y);
sta[++t]=(node){x,y,0,st[x]};
if(dep[x]==dep[y])
{
dep[x]++;
sta[t].v=1;
}
f[y]=x;
st[x]=mzz;
}
void del(int x)
{
while(x<t)
{
dep[sta[t].x]-=sta[t].v;
f[sta[t].y]=sta[t].y;
st[sta[t].x]=sta[t].p;
t--;
}
}
void solve(int x,int l,int r,int res)
{
int now=t;
for(int i=0;i<pos[x].size();i++)
merge(pos[x][i].first,pos[x][i].second,res);
if(l==r){ans[l]=res;del(now);return;}
int mid=(l+r)>>1;
solve(L(x),l,mid,res);
solve(R(x),mid+1,r,res);
del(now);
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<n;i++)
{
int u,v,l,r;
scanf("%d%d%d%d",&u,&v,&l,&r);
add(u,v);add(v,u);
build(1,1,n,l,r,u,v);
}
dfs1(1);
dfs2(1,1);
for(int i=1;i<=n;i++)
{
f[i]=i;
st[i]=make_pair(i,i);
}
solve(1,1,n,0);
while(m--)
{
int x;scanf("%d",&x);
printf("%d\n",ans[x]);
}
return 0;
}
rp++
[CSP-S模拟测试]:Dash Speed(线段树+并查集+LCA)
标签:space bit scanf 输入 线段树 个数 ret tor turn
原文地址:https://www.cnblogs.com/wzc521/p/11623020.html