标签:problem scan algorithm 半径 ++ tor 问题 const https
// 2019.10.3
// 练习题:2018 ICPC 南京现场赛
给定空间内 N 个点,求某个点到 N 个点的距离最大值的最小值。
?
非常裸的最小球覆盖问题啊,即找到半径最小的球包含全部的点。
在最小圆覆盖问题上,可以使用随机增量法,这里没有四点确定球心的公式,所以板子失效了。
最小圆覆盖可以用三分套三分,这里空间有三维,假装证明得到在任意一维上都满足凸函数特性,那么再套一层维度三分就OK了。
?
三分套三分套三分写法,复杂度O(n*log^3)
#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const double eps = 1e-3;
struct Point {
double x, y, z;
Point() {
x = y = z = 0.0;
}
Point(double xx, double yy, double zz) {
x = xx, y = yy, z = zz;
}
Point operator-(const Point& p) {
return Point(x-p.x, y-p.y, z-p.z);
}
double dis() {
return sqrt(x*x+y*y+z*z);
}
}pt[110];
int n;
double cal(double x, double y, double z) {
double res = 0;
for(int i=1;i<=n;i++) {
res = max(res, (pt[i]-Point(x, y, z)).dis());
}
return res;
}
double cal2(double x, double y) {
double res = 1e18;
double l = -100000, r = 100000;
while(r-l>eps) {
double m1 = (r-l)/3 + l;
double m2 = (r-l)/3*2 + l;
double res1 = cal(x, y, m1), res2 = cal(x, y, m2);
res = min(res, min(res1, res2));
if(res1<res2) r = m2;
else l = m1;
}
return res;
}
double cal3(double x) {
double res = 1e18;
double l = -100000, r = 100000;
while(r-l>eps) {
double m1 = (r-l)/3 + l;
double m2 = (r-l)/3*2 + l;
double res1 = cal2(x, m1), res2 = cal2(x, m2);
res = min(res, min(res1, res2));
if(res1<res2) r = m2;
else l = m1;
}
return res;
}
int main() {
cin>>n;
for(int i=1;i<=n;i++) {
scanf("%lf %lf %lf", &pt[i].x, &pt[i].y, &pt[i].z);
}
double res = 1e18;
double l = -100000, r = 100000;
while(r-l>eps) {
double m1 = (r-l)/3 + l;
double m2 = (r-l)/3*2 + l;
double res1 = cal3(m1), res2 = cal3(m2);
res = min(res, min(res1, res2));
if(res1<res2) r = m2;
else l = m1;
}
printf("%.10lf\n", res);
return 0;
}
?
模拟退火写法,对于三维复杂度更低:
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const double eps = 1e-5;
struct Point{
double x, y, z;
}p[110], op;
int n;
inline double dist(Point &a, Point &b) {
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y)+(a.z-b.z)*(a.z-b.z));
}
void solve() {
double ans, delta = 10000.0;
double maxDis, tempDis;
while(delta>eps){
int id = 0;
maxDis = dist(op, p[id]);
for(int i=1;i<n;i++){
tempDis=dist(op,p[i]);
if(tempDis>maxDis){
maxDis = tempDis;
id = i;
}
}
ans = maxDis;
op.x += (p[id].x-op.x)/maxDis*delta;
op.y += (p[id].y-op.y)/maxDis*delta;
op.z += (p[id].z-op.z)/maxDis*delta;
delta *= 0.98;
}
printf("%.10lf\n", ans);
}
int main() {
while(scanf("%d", &n)!=EOF && n) {
op.x = op.y = op.z = 0;
for(int i=0;i<n;i++) {
scanf("%lf %lf %lf", &p[i].x, &p[i].y, &p[i].z);
}
solve();
}
return 0;
}
这一题三分做法会T,只能用模拟退火才能过。
注意初始点选择。
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const double eps = 1e-5;
struct Point{
double x, y, z;
}p[35], op;
int n;
inline double dist(Point &a, Point &b) {
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y)+(a.z-b.z)*(a.z-b.z));
}
void solve() {
double ans, delta = 100.0;
double maxDis, tempDis;
while(delta>eps){
int id = 0;
maxDis = dist(op, p[id]);
for(int i=1;i<n;i++){
tempDis=dist(op,p[i]);
if(tempDis>maxDis){
maxDis = tempDis;
id = i;
}
}
ans = maxDis;
op.x += (p[id].x-op.x)/maxDis*delta;
op.y += (p[id].y-op.y)/maxDis*delta;
op.z += (p[id].z-op.z)/maxDis*delta;
delta *= 0.98;
}
printf("%.5lf\n", ans);
}
int main() {
while(scanf("%d", &n)!=EOF && n) {
op.x = op.y = op.z = 0;
for(int i=0;i<n;i++) {
scanf("%lf %lf %lf", &p[i].x, &p[i].y, &p[i].z);
op.x += p[i].x;
op.y += p[i].y;
op.z += p[i].z;
}
op.x /= n; op.y /= n; op.z /= n;
solve();
}
return 0;
}
HDU3007 HDU3932 类似。
注意HDU3932 n==1采用模拟退火要特判。。。。
D.Country Meow 最小球覆盖 三分套三分套三分 && 模拟退火
标签:problem scan algorithm 半径 ++ tor 问题 const https
原文地址:https://www.cnblogs.com/izcat/p/11632683.html