标签:sci imu mui 为什么 范围 cni bcg 集群 ons
前面博客我们已经学习到sentinel问题?为什么还要讲cluster呢?
使用Redis Sentinel 模式架构的缓存体系,在使用的过程中,随着业务的增加不可避免的要对Redis进行扩容,熟知的扩容方式有两种,一种是垂直扩容,一种是水平扩容。垂直扩容表示通过加内存方式来增加整个缓存体系的容量比如将缓存大小由2G调整到4G,这种扩容不需要应用程序支持;水平扩容表示表示通过增加节点的方式来增加整个缓存体系的容量比如本来有1个节点变成2个节点,这种扩容方式需要应用程序支持。垂直扩容看似最便捷的扩容,但是受到机器的限制,一个机器的内存是有限的,所以垂直扩容到一定阶段不可避免的要进行水平扩容,如果预留出很多节点感觉又是对资源的一种浪费因为对业务的发展趋势很快预测。Redis Sentinel 水平扩容一直都是程序猿心中的痛点,因为水平扩容牵涉到数据的迁移。迁移过程一方面要保证自己的业务是可用的,一方面要保证尽量不丢失数据所以数据能不迁移就尽量不迁移。针对这个问题,Redis Cluster就应运而生了,下面简单介绍一下RedisCluster。
Redis Cluster是Redis的分布式解决方案,在Redis 3.0版本正式推出的,有效解决了Redis分布式方面的需求。当遇到单机内存、并发、流量等瓶颈时,可以采用Cluster架构达到负载均衡的目的。分布式集群首要解决把整个数据集按照分区规则映射到多个节点的问题,即把数据集划分到多个节点上,每个节点负责整个数据的一个子集。Redis Cluster采用哈希分区规则中的虚拟槽分区。虚拟槽分区巧妙地使用了哈希空间,使用分散度良好的哈希函数把所有的数据映射到一个固定范围内的整数集合,整数定义为槽(slot)。Redis Cluster槽的范围是0 ~ 16383。槽是集群内数据管理和迁移的基本单位。采用大范围的槽的主要目的是为了方便数据的拆分和集群的扩展,每个节点负责一定数量的槽。Redis Cluster采用虚拟槽分区,所有的键根据哈希函数映射到0 ~ 16383,计算公式:slot = CRC16(key)&16383。每一个实节点负责维护一部分槽以及槽所映射的键值数据。
Redis集群
高性能:
基于KEY进行数据拆分
1、在多分片节点中,将16384个槽位,均匀分布到多个分片节点中
2、存数据时,将key做crc16(key),然后和16384进行取模,得出槽位值(0-16383之间)
3、根据计算得出的槽位值,找到相对应的分片节点的主节点,存储到相应槽位上
4、如果客户端当时连接的节点不是将来要存储的分片节点,分片集群会将客户端连接切换至真正存储节点进行数据存储
高可用:
在搭建集群时,会为每一个分片的主节点,对应一个从节点,实现slaveof的功能,同时当主节点down,实现类似于sentinel的自动failover的功能。
Redis 集群是一个可以在多个 Redis 节点之间进行数据共享的设施(installation)。
Redis 集群不支持那些需要同时处理多个键的 Redis 命令, 因为执行这些命令需要在多个 Redis 节点之间移动数据, 并且在高负载的情况下, 这些命令将降低 Redis 集群的性能, 并导致不可预测的行为。
Redis 集群通过分区(partition)来提供一定程度的可用性(availability): 即使集群中有一部分节点失效或者无法进行通讯, 集群也可以继续处理命令请求。
将数据自动切分(split)到多个节点的能力。
当集群中的一部分节点失效或者无法进行通讯时, 仍然可以继续处理命令请求的能力。
redis cluster集群
标签:sci imu mui 为什么 范围 cni bcg 集群 ons
原文地址:https://www.cnblogs.com/yang-ning/p/11642850.html