码迷,mamicode.com
首页 > 其他好文 > 详细

模拟测试65

时间:2019-10-11 18:14:49      阅读:68      评论:0      收藏:0      [点我收藏+]

标签:lcm   复杂度   size   gcd   最大   维护   模拟   定时   family   

T1:

  枚举$m$的个数,$O(1)$算出有几个$x$符合条件。

  这样不仅效率低下,还会算重。

  把$m$一定时的所有结果拍在数轴上发现仅当$ym>=lcm(n,m)$时会算重。

  枚举到$lcm$即可。

  时间复杂度$O(n)$。

T2:

  直接统计复杂度太高,考虑换一个思路。

  枚举$gcd$,将所有边权为$gcd$倍数的边都连接起来,求树上直径即可。

  发现只有边权的因数才会成为$gcd$,所以只枚举约数即可。

  维护连接的边和点,一个一个删除。

  每条边至多被枚举$\sqrt{v}$次,复杂度可以接受。

  时间复杂度$O(n\sqrt{v})$。

T3:

  神贪心。

  设起点为$s$,终点为$e$,最优决策一定为$s$和$e$中间的边都尽可能经过一次。

  由于要到达终点,$s$和$e$外侧的每条边至少被经过两次。

  而在向左走的步数一定的情况下,$e$在一定区间内。

  枚举$e$的位置,然后用堆维护中间的边,找出最大的几条边,仅走一次。

  其他边都要走两次。

  时间复杂度$O(nlogn)$。

模拟测试65

标签:lcm   复杂度   size   gcd   最大   维护   模拟   定时   family   

原文地址:https://www.cnblogs.com/hz-Rockstar/p/11655732.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!