标签:sum cti print reg cstring utc tchar class sts
有\(n\)(\(n\leq 10^9\))个数:\(1,2,...,n\),每次操作是随机取一个没被删除的数\(x\),并删去\(x,x^2,x^3,...\)。
求期望几次删完所有数。
可以把问题转换成:有\(n\)个数,每次操作随机取一个数\(x\),若\(x\)未被标记则标记\(x,x^2,x^3,...\)并删去\(x\),反之则删去\(x\),求期望删多少个未被标记的数。
发现一个数\(x\)被计入答案的充要条件是\(\forall y\in\{1,2,3,...,n\}\)满足\(\exists k,y^k=x\),删除序列中\(y\)在\(x\)之后。
记\(y\)的个数为\(p\),问题变成有\(p+1\)个数的排列,指定的数在第一个的概率。这个问题的答案是\(\frac{1}{p+1}\)。
也就是说,设\(p_i\)表示当\(x=i\)时\(y\)的个数,那么原问题的答案是\(\sum\limits_{i=1}^n \frac{1}{p_i+1}\)。
这个式子看上去只能\(\Theta(n)\)地求。
发现\([2,n]\)中有\(\lfloor \sqrt n \rfloor-1\)个平方数,三次根号\(n\)下取整减1个立方数……,\(p_i\neq 0\)的数的个数很少,这些数可以暴力求。
\(p_i=0\)的数的\(\frac{1}{p_i+1}=1\),可以直接求。
#include<algorithm>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<ctime>
#include<iomanip>
#include<iostream>
#include<map>
#include<queue>
#include<set>
#include<stack>
#include<vector>
#define rep(i,x,y) for(register int i=(x);i<=(y);++i)
#define dwn(i,x,y) for(register int i=(x);i>=(y);--i)
#define view(u,k) for(int k=fir[u];~k;k=nxt[k])
#define LL long long
#define maxn 1000007
using namespace std;
int read()
{
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)&&ch!='-')ch=getchar();
if(ch=='-')f=-1,ch=getchar();
while(isdigit(ch))x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
return x*f;
}
void write(int x)
{
if(x==0){putchar('0'),putchar('\n');return;}
int f=0;char ch[20];
if(x<0)putchar('-'),x=-x;
while(x)ch[++f]=x%10+'0',x/=10;
while(f)putchar(ch[f--]);
putchar('\n');
return;
}
int n,t,mx=1e9,pos[maxn],cnt;
map<int,int>mp;
LL mul(LL x,int y){LL res=1;while(y){if(y&1)res*=x;x*=x,y>>=1;}return res;}
int main()
{
rep(i,2,30)
{
LL now=mul(2,i);int j;
for(j=2;now<=mx;)
{
mp[now]++;
if(mp[now]==1)pos[++cnt]=now;
j++;now=mul(j,i);
}
}
t=read();
while(t--)
{
n=read();
double ans=0.0;int num=0;
rep(i,1,cnt)if(pos[i]<=n)num++,ans+=1.0/((double)(mp[pos[i]]+1));
ans+=(double)(n-num);
printf("%.8lf\n",ans);
}
return 0;
}
ysf口胡的
标签:sum cti print reg cstring utc tchar class sts
原文地址:https://www.cnblogs.com/xzyf/p/11683330.html