码迷,mamicode.com
首页 > 其他好文 > 详细

sklearn使用高斯核SVM显示支持向量

时间:2019-10-16 13:18:35      阅读:126      评论:0      收藏:0      [点我收藏+]

标签:rap   image   from   span   splay   tree   vector   pre   python   

import graphviz
import mglearn
from mpl_toolkits.mplot3d import Axes3D
from sklearn.datasets import load_breast_cancer, make_blobs
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier, export_graphviz
from IPython.display import display
import matplotlib.pyplot as plt
import numpy as np
import matplotlib as mt
import pandas as pd

X, y = mglearn.tools.make_handcrafted_dataset()
svm = SVC(kernel=rbf, C=100, gamma=0.1).fit(X, y)
mglearn.plots.plot_2d_separator(svm, X, eps=.5)
mglearn.discrete_scatter(X[:, 0], X[:, 1], y)
# plot support vectors
sv = svm.support_vectors_
print(sv)
# class labels of support vectors are given by the sign of the dual coefficients
sv_labels = svm.dual_coef_.ravel() > 0
mglearn.discrete_scatter(sv[:, 0], sv[:, 1], sv_labels, s=15, markeredgewidth=3)
plt.xlabel("Feature 0")
plt.ylabel("Feature 1")
plt.show()

技术图片

sklearn使用高斯核SVM显示支持向量

标签:rap   image   from   span   splay   tree   vector   pre   python   

原文地址:https://www.cnblogs.com/starcrm/p/11684587.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!