标签:大数据 最大 svm blank 小结 计算 新网 ref 拉格朗日乘子
更新、更全的《机器学习》的更新网站,更有python、go、数据结构与算法、爬虫、人工智能教学等着你:https://www.cnblogs.com/nickchen121/
支持向量机中有线性可分支持向量机、线性支持向量机、非线性支持向量机、线性支持回归等算法,算是前期比较繁琐的一个内容,如果感觉自己还是对间隔最大化、支持向量等知识点不太了解的,可以对着简单的感知机模型多看几遍,多揣摩揣摩,如果对对偶形式优化不太懂得,可以参考拉格朗日乘子法多看一看,如果不涉及太深,优化方面仅做了解即可,下面将和大家聊一聊支持向量机的优缺点。
支持向量机也算是告一段落,虽然在目前大数据的时代背景下,集成学习和神经网络被广泛应用于工业上,SVM由于计算开销大的缺点貌似有点招架不住,但是对于数据量不大的样本集,SVM的表现还是非常不错的。
标签:大数据 最大 svm blank 小结 计算 新网 ref 拉格朗日乘子
原文地址:https://www.cnblogs.com/nickchen121/p/11686746.html