标签:假设 数据结构 数据 接收 ext lan 通过 独立 div
[TOC] 更新、更全的《机器学习》的更新网站,更有python、go、数据结构与算法、爬虫、人工智能教学等着你:https://www.cnblogs.com/nickchen121/
贝叶斯决策理论:在不完全情报下,对部分未知的状态用主观概率估计。
若果$A$和$B$相互独立,则有$p(A,B) = p(A)p(B)$,并有条件概率公式
通过条件概率可得
\(p(A|B)\):后验概率,B发生的情况下发生A的概率,需要计算的概率
\(p(B|A)\):似然度,A假设条件成立的情况发生B的概率
\(p(A)\):A的先验概率,也可以理解成一般情况下A发生的概率
\(p(B)\):标准化常量,也可以理解成一般情况下B发生的概率
全概率公式
通过全概率公式可得
在数字通信中,由于随机干扰,因此接受的信号与发出的信号可能不同,为了确定发出的信号,通常需要计算各种概率。
如果发报机以0.6和0.4的概率发出信号0和1;
当发出信号0时,以0.7和0.2的概率收到信号0和1;
当发出信号1时,接收机以0.8和0.2收到信号1和0。
计算当接受机收到信号0时,发报机发出信号0的概率。
通过上述给出的数据可以得到以下推导
\(p(A_0) = 0.6\):发报机发出信号0的概率
\(p(A_1) = 0.4\):发报机发出信号1的概率
\(p(B)=p(A_0)p(B|A_0) + p(A_1)p(B|A_1)\):发报机接收到信号0的概率
\(p(B|A_0) = 0.7\):发报机发出信号0接收到信号0的概率
\(p(B|A_1) = 0.2\):发报机发出信号1接收到信号0的概率
标签:假设 数据结构 数据 接收 ext lan 通过 独立 div
原文地址:https://www.cnblogs.com/nickchen121/p/11686765.html