标签:des style blog http io color os ar 使用
本次是第一次在生产环境部署HBase,本文若有配置上的不妥之处还请高手指正。
hadoop版本:hadoop-2.4.1
HBase版本:hbase-0.98.6.1-hadoop2
JDK:1.6
操作系统:centOS6.3 64bit
1. 安装snappy
#yum install snappy
Installed: snappy.x86_64 0:1.1.0-1.el6
#yum install snappy-devel
记录一下,当前GCC版本4.4.7
2. 由于hadoop官网下载的bin包中包含的native lib是32bit环境编译的,需要重新编译hadoop源码以获得64bit的native lib。
$ file libhadoop.so.1.0.0 libhadoop.so.1.0.0: ELF 32-bit LSB shared object, Intel 80386, version 1 (SYSV), dynamically linked, not stripped
(1) 在hadoop官网下载 hadoop-2.4.1-src.tar.gz。解压后打开 BUILDING.txt
Requirements: * Unix System * JDK 1.6+ * Maven 3.0 or later * Findbugs 1.3.9 (if running findbugs) * ProtocolBuffer 2.5.0 * CMake 2.6 or newer (if compiling native code) * Internet connection for first build (to fetch all Maven and Hadoop dependencies)
按照上述指示,
(2) 下载 Maven:http://maven.apache.org/download.cgi
(3) 下载 ProtocolBuffer 2.5.0: https://code.google.com/p/protobuf/downloads/list,解压编译
$ cd protobuf-2.6.1 $ ./configure
出现以下错误:
configure: error: C++ preprocessor "/lib/cpp" fails sanity check
经过网上搜索,需要安装c++相关的库:
# yum install glibc-headers
# yum install gcc-c++
再次执行 ./configure,这次通过了。
然后就可以make了
$ make
# make install
安装成功后,可以在/usr/local/lib/下看到库文件:
-rw-r--r-- 1 root root 22955150 Oct 23 11:41 libprotobuf.a -rwxr-xr-x 1 root root 988 Oct 23 11:41 libprotobuf.la -rw-r--r-- 1 root root 2233428 Oct 23 11:41 libprotobuf-lite.a -rwxr-xr-x 1 root root 1023 Oct 23 11:41 libprotobuf-lite.la lrwxrwxrwx 1 root root 25 Oct 23 11:41 libprotobuf-lite.so -> libprotobuf-lite.so.9.0.1 lrwxrwxrwx 1 root root 25 Oct 23 11:41 libprotobuf-lite.so.9 -> libprotobuf-lite.so.9.0.1 -rwxr-xr-x 1 root root 1038614 Oct 23 11:41 libprotobuf-lite.so.9.0.1 lrwxrwxrwx 1 root root 20 Oct 23 11:41 libprotobuf.so -> libprotobuf.so.9.0.1 lrwxrwxrwx 1 root root 20 Oct 23 11:41 libprotobuf.so.9 -> libprotobuf.so.9.0.1 -rwxr-xr-x 1 root root 9300568 Oct 23 11:41 libprotobuf.so.9.0.1 -rw-r--r-- 1 root root 39008232 Oct 23 11:41 libprotoc.a -rwxr-xr-x 1 root root 1004 Oct 23 11:41 libprotoc.la lrwxrwxrwx 1 root root 18 Oct 23 11:41 libprotoc.so -> libprotoc.so.9.0.1 lrwxrwxrwx 1 root root 18 Oct 23 11:41 libprotoc.so.9 -> libprotoc.so.9.0.1 -rwxr-xr-x 1 root root 13252621 Oct 23 11:41 libprotoc.so.9.0.1
(4) 安装cmake
# yum install cmake
(5) 安装openssl
# yum install openssl
# yum install openssl-devel
(6) 安装zlib相关
# yum install zlib
# yum install zlib-devel
(7) 下载 ant 1.9.4
下载 http://ant.apache.org/bindownload.cgi
也可以直接 yum install ant
(8) 设置环境变量:
export JAVA_HOME=/usr/java/jdk1.6.0_43
export PATH="$JAVA_HOME/bin:$PATH"
export MAVEN_HOME=/data2/hadoop_source/apache-maven-3.2.3
export PATH="$MAVEN_HOME/bin:$PATH"
export ANT_HOME=/data2/hadoop_source/apache-ant-1.9.4 export PATH="$PATH:$ANT_HOME/bin"
(9) 编译hadoop的native库:
/data2/hadoop_source/apache-maven-3.2.3/bin/mvn package -X -Pdist,native -Dtar -DskipTests -Drequire.snappy
最后即使有部分project编译出错也没有关系,只要 hadoop-hdfs-project,hadoop-common-project 编译通过就可以了。
(10) 编译完成后,可以找到native lib:
# find . -name ‘lib*.so*‘ ./hadoop-hdfs-project/hadoop-hdfs/target/hadoop-hdfs-2.4.1/lib/native/libhdfs.so ./hadoop-hdfs-project/hadoop-hdfs/target/hadoop-hdfs-2.4.1/lib/native/libhdfs.so.0.0.0 ./hadoop-hdfs-project/hadoop-hdfs/target/native/target/usr/local/lib/libhdfs.so ./hadoop-hdfs-project/hadoop-hdfs/target/native/target/usr/local/lib/libhdfs.so.0.0.0 ./hadoop-common-project/hadoop-common/target/hadoop-common-2.4.1/lib/native/libhadoop.so.1.0.0 ./hadoop-common-project/hadoop-common/target/hadoop-common-2.4.1/lib/native/libhadoop.so ./hadoop-common-project/hadoop-common/target/native/target/usr/local/lib/libhadoop.so.1.0.0 ./hadoop-common-project/hadoop-common/target/native/target/usr/local/lib/libhadoop.so
将库文件拷贝至系统目录 /usr/local/lib64/
cp ./hadoop-hdfs-project/hadoop-hdfs/target/hadoop-hdfs-2.4.1/lib/native/* /usr/local/lib64/ cp ./hadoop-common-project/hadoop-common/target/hadoop-common-2.4.1/lib/native/* /usr/local/lib64/
进入/usr/local/lib64/,创建symbol link
# ln -s libhdfs.so.0.0.0 libhdfs.so # ln -s libhadoop.so.1.0.0 libhadoop.so
(11) 下载hbase, http://mirrors.cnnic.cn/apache/hbase/hbase-0.98.7/
解压后进入目录,确认native lib是否已经安装成功:
$ LD_LIBRARY_PATH=/usr/local/lib64 ./bin/hbase org.apache.hadoop.util.NativeLibraryChecker
log4j:WARN No appenders could be found for logger (org.apache.hadoop.util.NativeCodeLoader).
log4j:WARN Please initialize the log4j system properly.
log4j:WARN See http://logging.apache.org/log4j/1.2/faq.html#noconfig for more info.
Native library checking:
hadoop: true /usr/local/lib64/libhadoop.so.1.0.0
zlib: true /lib64/libz.so.1
snappy: true /usr/lib64/libsnappy.so.1
lz4: true revision:99
bzip2: false
由于打算仅使用snappy作为压缩算法,所以仅仅需要确认 hadoop, snappy 是true就行了。
本次编译native lib过程中,出现了各种错误,都是因为上面列出的某些软件未安装。
无须在每个机器上再次编译,只需将编译过程中产生的那些 .a, .so, 文件拷贝至每个机器即可。当然了,symbol link还是要重新创建的。
---------------------------- 分割线 上方是 hadoop native lib 的编译 ------------------------------------------
3. 配置hbase分布式环境的总体流程
本次安装部署的服务器为5台,hbase-0为NameNode, hbase-r为ResourceManager,hbase-1、hbase-2、hbase-3为DataNode。
所有服务器的安装的目录为:
hadoop程序目录:/hbase/hadoop
hbase程序目录:/hbase/hbase
zookeeper的程序目录:/hbase/zookeeper
hdfs数据目录(data node用):/hbase/hdfs
hdfs元数据目录(name node用):/hbase/hdfsmeta
hdfs临时目录:/hbase/hdfstmp
yarn中间数据目录:/hbase/yarnlocal
yarn日志目录:/hbase/yarnlog
job history server的临时目录:/hbase/mr-history/tmp
job history server的done目录:/hbase/mr-history/done
各个deameon的pid目录(安全起见,目录权限700):/hbase/var/pid
zookeeper的数据目录:/hbase/zookeeperdata
zookeeper的log目录:/hbase/zookeeperlog
hbase临时目录:/hbase/hbasetmp
ZooKeeper的下载地址:http://mirrors.cnnic.cn/apache/zookeeper/stable/
本次下载的是 ZooKeeper3.4.6。
本次安装采用独立的ZooKeeper,不使用hbase自带的ZooKeeper。
(1) 配置host name, /etc/hosts,为了方便使用,我将hostname配置成了以下样子:
10.161.150.10 hbase-0 10.161.150.20 hbase-r 10.161.150.11 hbase-1 10.161.150.12 hbase-2 10.161.150.13 hbase-3
为了方便,还添加了1个 hbase-me,代表当前服务器的内网IP。
注意:上述配置hostname要放在靠前的位置,hbase的Master启动的时候,会根据ip查找hostname,相同ip的有多个hostname的时候,排在第1个的会被采用,然后被传播到RegionServer。
同时,将主机hostname修改成对应的名字。修改/etc/sysconfig/network,或者立即生效:
hostname hbase-0
(2) 配置免密码ssh
参考我的另一篇文章:http://www.cnblogs.com/got-my-way/p/4030923.html
(3) 解压hadoop包。
(4) 解压hbase包。
(5) 为了方便运行,将需要的环境变量配置在当前用户的.bashrc
vi ~/.bashrc
如下:
# For hadoop and hbase ------------------------------------- export JAVA_HOME="/usr/java/jdk1.6.0_43" export PATH="$JAVA_HOME/bin:$PATH" export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/usr/local/lib64:/usr/lib64:/usr/local/lib" export HADOOP_PREFIX="/hbase/hadoop" export HADOOP_YARN_HOME=$HADOOP_PREFIX export HADOOP_CONF_DIR="/hbase/hadoop/etc/hadoop" export HBASE_HOME="/hbase/hbase" export HBASE_CONF_DIR="/hbase/hbase/conf" export ZOOKEEPER_HOME="/hbase/zookeeper" #log dir ----- export HADOOP_LOG_DIR="/hbase/var/log" export YARN_LOG_DIR="/hbase/var/log" #pid dir ----- export HADOOP_PID_DIR="/hbase/var/pid" export HADOOP_SECURE_DN_PID_DIR="/hbase/var/pid" export HADOOP_MAPRED_PID_DIR="/hbase/var/pid" #java options ----- export HADOOP_JVM_GC_OPTS="-XX:PermSize=512m -XX:MaxPermSize=512m -XX:+DisableExplicitGC -XX:SurvivorRatio=1 -XX:+UseConcMarkSweepGC -XX:+UseParNewGC -XX:+CMSParallelRemarkEnabled -XX:+UseCMSCompactAtFullCollection -XX:CMSFullGCsBeforeCompaction=0 -XX:+CMSClassUnloadingEnabled -XX:LargePageSizeInBytes=128M -XX:+UseFastAccessorMethods -XX:+UseCMSInitiatingOccupancyOnly -XX:CMSInitiatingOccupancyFraction=80 -XX:SoftRefLRUPolicyMSPerMB=0" export HADOOP_JVM_SECURITY_OPTS="-Djava.security.krb5.realm=OX.AC.UK -Djava.security.krb5.kdc=kdc0.ox.ac.uk:kdc1.ox.ac.uk" export HADOOP_NAMENODE_OPTS="${HADOOP_JVM_SECURITY_OPTS} ${HADOOP_JVM_GC_OPT}" export HADOOP_DATANODE_OPTS="${HADOOP_JVM_SECURITY_OPTS} ${HADOOP_JVM_GC_OPT}" export HADOOP_SECONDARYNAMENODE_OPTS="${HADOOP_JVM_SECURITY_OPTS} ${HADOOP_JVM_GC_OPT}" export YARN_RESOURCEMANAGER_OPTS="${HADOOP_JVM_SECURITY_OPTS} ${HADOOP_JVM_GC_OPT}" export YARN_NODEMANAGER_OPTS="${HADOOP_JVM_SECURITY_OPTS} ${HADOOP_JVM_GC_OPT}" export YARN_PROXYSERVER_OPTS="${HADOOP_JVM_SECURITY_OPTS} ${HADOOP_JVM_GC_OPT}" export HADOOP_JOB_HISTORYSERVER_OPTS="${HADOOP_JVM_SECURITY_OPTS} ${HADOOP_JVM_GC_OPT}" export HADOOP_HEAPSIZE="1536" export YARN_HEAPSIZE="1024" export HBASE_OPTS="-XX:MaxDirectMemorySize=128m ${HADOOP_JVM_SECURITY_OPTS} ${HADOOP_JVM_GC_OPT}" export HBASE_HEAPSIZE="2048" export HBASE_MANAGES_ZK=false #export YARN_RESOURCEMANAGER_HEAPSIZE= #export YARN_NODEMANAGER_HEAPSIZE= #export YARN_PROXYSERVER_HEAPSIZE= #export HADOOP_JOB_HISTORYSERVER_HEAPSIZE=
(6) 安装上述“编译native lib”步骤中所安装过的包
yum install snappy yum install snappy-devel yum install glibc-headers yum install gcc-c++ yum install cmake yum install openssl yum install openssl-devel yum install zlib yum install zlib-devel
至此基本的环境准备好了。接下来是具体的配置
4. 进入hadoop程序目录,配置hadoop (参考文档:http://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/ClusterSetup.html)
(1) 修改配置文件
a. etc/hadoop/core-site.xml
<configuration> <property> <name>fs.defaultFS</name> <value>hdfs://hbase-0:9000/</value> </property> <property> <name>io.file.buffer.size</name> <value>131072</value> </property> <property> <name>hadoop.tmp.dir</name> <value>/hbase/hdfstmp</value> </property> <property> <name>hadoop.logfile.size</name> <value>104857600</value> </property> <property> <name>hadoop.logfile.count</name> <value>20</value> </property> <property> <name>io.bytes.per.checksum</name> <value>1024</value> </property> <property> <name>io.skip.checksum.errors</name> <value>false</value> </property> <property> <name>io.serializations</name> <value>org.apache.hadoop.io.serializer.WritableSerialization</value> </property> <property> <name>io.seqfile.compress.blocksize</name> <value>1048576</value> </property> <property> <name>io.compression.codecs</name> <value>org.apache.hadoop.io.compress.DefaultCodec,org.apache.hadoop.io.compress.GzipCodec,org.apache.hadoop.io.compress.SnappyCodec</value> </property> </configuration>
b. etc/hadoop/hdfs-site.xml
<configuration> <property> <name>dfs.replication</name> <value>3</value> </property> <property> <name>dfs.blocksize</name> <value>2147483648</value> </property> <property> <name>dfs.namenode.handler.count</name> <value>128</value> </property> <!-- config for NameNode below --> <property> <name>dfs.namenode.name.dir</name> <value>/hbase/hdfsmeta</value> </property> <!-- config for DataNode below --> <property> <name>dfs.datanode.data.dir</name> <value>/hbase/hdfs</value> </property> </configuration>
c. etc/hadoop/yarn-site.xml
<configuration> <!-- Site specific YARN configuration properties --> <!-- config for Node Manager below --> <property> <name>yarn.nodemanager.aux-services</name> <value>mapreduce_shuffle</value> </property> <property> <name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name> <value>org.apache.hadoop.mapred.ShuffleHandler</value> </property> <property> <name>yarn.nodemanager.resource.memory-mb</name> <value>1024</value> </property> <property> <name>yarn.nodemanager.local-dirs</name> <value>/hbase/yarnlocal</value> </property> <property> <name>yarn.nodemanager.log-dirs</name> <value>/hbase/yarnlog</value> </property> <property> <name>yarn.nodemanager.log.retain-seconds</name> <value>10800</value> </property> <!-- config for Resource Manager below --> <property> <name>yarn.resourcemanager.address</name> <value>hbase-me:18040</value> </property> <property> <name>yarn.resourcemanager.scheduler.address</name> <value>hbase-me:18030</value> </property> <property> <name>yarn.resourcemanager.resource-tracker.address</name> <value>hbase-me:18025</value> </property> <property> <name>yarn.resourcemanager.admin.address</name> <value>hbase-me:18141</value> </property> <property> <name>yarn.resourcemanager.webapp.address</name> <value>hbase-me:18088</value> </property> <property> <name>yarn.resourcemanager.scheduler.class</name> <value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.CapacityScheduler</value> </property> <property> <name>yarn.scheduler.minimum-allocation-mb</name> <value>256</value> </property> <property> <name>yarn.scheduler.maximum-allocation-mb</name> <value>1024</value> </property> </configuration>
d. etc/hadoop/mapred-site.xml
<configuration> <!-- config for MapReduce Applications below --> <property> <name>mapreduce.framework.name</name> <value>yarn</value> </property> <property> <name>mapred.output.compress</name> <value>true</value> <description>Should the job outputs be compressed?</description> </property> <property> <name>mapred.output.compression.type</name> <value>RECORD</value> </property> <property> <name>mapred.output.compression.codec</name> <value>org.apache.hadoop.io.compress.SnappyCodec</value> </property> <property> <name>mapred.compress.map.output</name> <value>true</value> </property> <property> <name>mapred.map.output.compression.codec</name> <value>org.apache.hadoop.io.compress.SnappyCodec</value> </property> <property> <name>mapreduce.map.memory.mb</name> <value>1536</value> </property> <property> <name>mapreduce.map.java.opts</name> <value>-Xmx1024M</value> </property> <property> <name>mapreduce.reduce.memory.mb</name> <value>2048</value> </property> <property> <name>mapreduce.reduce.java.opts</name> <value>-Xmx2048M</value> </property> <property> <name>mapreduce.task.io.sort.mb</name> <value>512</value> </property> <property> <name>mapreduce.task.io.sort.factor</name> <value>100</value> </property> <property> <name>mapreduce.reduce.shuffle.parallelcopies</name> <value>50</value> </property> <!-- config for MapReduce JobHistory Server below --> <property> <name>mapreduce.jobhistory.intermediate-done-dir</name> <value>/hbase/mr-history/tmp</value> </property> <property> <name>mapreduce.jobhistory.done-dir</name> <value>/hbase/mr-history/done</value> </property>
f. etc/hadoop/slaves
将作为DataNode的host name添加进去:
hbase-1
hbase-2
hbase-3
g. 上述配置好的hadoop目录复制到各台服务器。
5. 进入zookeeper目录,修改配置文件
(1) cp conf/zoo_sample.cfg conf/zoo.cfg,修改conf/zoo.cfg以下配置:
dataDir=/hbase/zookeeperdata dataLogDir=/hbase/zookeeperlog
server.1=hbase-0:2888:3888
server.2=hbase-r:2888:3888
server.3=hbase-1:2888:3888
server.4=hbase-2:2888:3888
server.5=hbase-3:2888:3888
(2) 在各台机器上 /hbase/zookeeperdata/下建立文件名myid,分别写入对应的1,2,3,4,5 ZooKeeper序号。
6. 进入hbase程序目录,配置hbase (参考文档:http://hbase.apache.org/book.html#quickstart-fully-distributed )
本次配置的架构为:hbase-0为Master,hbase-1、hbase-2、 hbase-3为RegionServer,ZooKeeper配置在所有服务器(文档中推荐3,5,7)。
(1) 修改配置文件
a. conf/regionservers
hbase-1 hbase-2 hbase-3
b. conf/backup-masters
将hbase-r设置为master的backup
hbase-r
c. conf/hbase-env.sh
export HBASE_OPTS="-XX:+UseConcMarkSweepGC ${HBASE_OPTS}"
d. conf/hbase-site.xml
<configuration> <property> <name>hbase.tmp.dir</name> <value>/hbase/hbasetmp</value> </property> <property> <name>hbase.rootdir</name> <value>hdfs://hbase-0:9000/hbase</value> </property> <property> <name>hbase.cluster.distributed</name> <value>true</value> </property> <property> <name>hbase.master.info.port</name> <value>16010</value> </property> <property> <name>hbase.master.info.bindAddress</name> <value>0.0.0.0</value> </property> <property> <name>hbase.column.max.version</name> <value>1</value> </property> <!-- for Zoo Keeper --> <property> <name>hbase.zookeeper.quorum</name> <value>hbase-0,hbase-r,hbase-1,hbase-2,hbase-3</value> </property> <property> <name>hbase.zookeeper.property.dataDir</name> <value>/hbase/zookeeperdata</value> </property> <property> <name>hbase.zookeeper.property.clientPort</name> <value>2181</value> </property> <property> <name>hbase.zookeeper.property.maxClientCnxns</name> <value>300</value> </property> <property> <name>zookeeper.session.timeout</name> <value>90000</value> </property> <!-- setting for region server --> <property> <name>hbase.hregion.max.filesize</name> <value>2147483648</value> </property> <property> <name>hbase.regionserver.port</name> <value>16020</value> </property> <property> <name>hbase.regionserver.codecs</name> <value>snappy,lz4</value> </property> <property> <name>hbase.regionserver.info.port</name> <value>16030</value> </property> <property> <name>hbase.regionserver.info.bindAddress</name> <value>hbase-me</value> </property> <property> <name>hbase.regionserver.handler.count</name> <value>128</value> </property> <property> <name>hbase.ipc.server.callqueue.read.ratio</name> <value>0.2</value> </property> <property> <name>hbase.ipc.server.callqueue.scan.ratio</name> <value>0.2</value> </property> <property> <name>hbase.zookeeper.peerport</name> <value>2888</value> </property> <property> <name>hbase.zookeeper.leaderport</name> <value>3888</value> </property> <property> <name>hbase.offpeak.start.hour</name> <value>0</value> </property> <property> <name>hbase.offpeak.end.hour</name> <value>7</value> </property> <property> <name>hbase.rpc.timeout</name> <value>60000</value> </property> <property> <name>hbase.rpc.shortoperation.timeout</name> <value>10000</value> </property> <property> <name>hbase.ipc.client.tcpnodelay</name> <value>true</value> </property> <property> <name>hbase.rest.port</name> <value>19080</value> </property> <!-- setting for client --> <property> <name>hbase.client.pause</name> <value>100</value> </property> <property> <name>hbase.ipc.client.tcpnodelay</name> <value>false</value> </property> <property> <name>ipc.ping.interval</name> <value>10000</value> </property> <property> <name>hbase.client.write.buffer</name> <value>2097152</value> </property> <property> <name>hbase.client.retries.number</name> <value>35</value> </property> <property> <name>hbase.client.max.total.tasks</name> <value>100</value> </property> <property> <name>hbase.client.max.perserver.tasks</name> <value>20</value> </property> <property> <name>hbase.client.max.perregion.tasks</name> <value>1</value> </property> <property> <name>hbase.client.scanner.caching</name> <value>100</value> </property> </configuration>
7. 检查某些系统设置
(1) 各台服务器关闭防火墙,或者将下列端口加入防火墙允许访问列表(/etc/sysconfig/iptables)
以下列表中部分端口号没有在配置的xml出现过,是hadoop或hbase的缺省值。
2181 | hbase.zookeeper.property.clientPort |
2888 | hbase.zookeeper.peerport |
3888 | hbase.zookeeper.leaderport |
9000 | fs.defaultFS |
10020 | mapreduce.jobhistory.address |
16010 | hbase.master.info.port |
16020 | hbase.regionserver.port |
16030 | hbase.regionserver.info.port |
18025 | yarn.resourcemanager.resource-tracker.address |
18030 | yarn.resourcemanager.scheduler.address |
18040 | yarn.resourcemanager.address |
18088 | yarn.resourcemanager.webapp.address |
18141 | yarn.resourcemanager.admin.address |
19080 | hbase.rest.port |
19888 | mapreduce.jobhistory.webapp.address |
50010 | hdfs client |
60000 | hbase.master.port |
60020 | hbase.regionserver.port |
33651 | catalog.CatalogTracker |
40641 | zookeeper.ClientCnxn |
(2) 检查ulimit, /etc/security/limits.conf
此处暂时设置为(假设启动hadoop的用户为admin)
admin - nofile 65536 admin - nproc 65536
8. 启动hadoop
(1) 初次启动之前,在hbase-0上格式化NameNode
$HADOOP_PREFIX/bin/hdfs namenode -format hbase-0
在hbase-r上格式化NameNode
$HADOOP_PREFIX/bin/hdfs namenode -format hbase-r
(2) 在hbase-0启动NameNode
$HADOOP_PREFIX/sbin/hadoop-daemon.sh --config $HADOOP_CONF_DIR --script hdfs start namenode
(3) 分别在hbase-1,hbase-2, hbase-3 上启动DataNode
$HADOOP_PREFIX/sbin/hadoop-daemon.sh --config $HADOOP_CONF_DIR --script hdfs start datanode
(4) 在hbase-r上启动ResourceManager
$HADOOP_YARN_HOME/sbin/yarn-daemon.sh --config $HADOOP_CONF_DIR start resourcemanager
(5) 在hbase-1, hbase-2, hbase-3上启动NodeManager
$HADOOP_YARN_HOME/sbin/yarn-daemon.sh --config $HADOOP_CONF_DIR start nodemanager
(6) 在hbase-r上启动Yarn的WebAppProxy Server
$HADOOP_YARN_HOME/sbin/yarn-daemon.sh start proxyserver --config $HADOOP_CONF_DIR
(7) 在hbase-r上启动MapReduce JobHistory Server
$HADOOP_PREFIX/sbin/mr-jobhistory-daemon.sh start historyserver --config $HADOOP_CONF_DIR
9. 停止hadoop
(1) hbase-0上停止NameNode
$HADOOP_PREFIX/sbin/hadoop-daemon.sh --config $HADOOP_CONF_DIR --script hdfs stop namenode
(2) 分别在hbase-1,hbase-2, hbase-3 上停止DataNode
$HADOOP_PREFIX/sbin/hadoop-daemon.sh --config $HADOOP_CONF_DIR --script hdfs stop datanode
(3) 在hbase-r上停止ResourceManager
$HADOOP_YARN_HOME/sbin/yarn-daemon.sh --config $HADOOP_CONF_DIR stop resourcemanager
(4) 在hbase-1, hbase-2, hbase-3上停止NodeManager
$HADOOP_YARN_HOME/sbin/yarn-daemon.sh --config $HADOOP_CONF_DIR stop nodemanager
(5) 在hbase-r上停止Yarn的WebAppProxy Server
$HADOOP_YARN_HOME/sbin/yarn-daemon.sh stop proxyserver --config $HADOOP_CONF_DIR
(6) 在hbase-r上停止MapReduce JobHistory Server
$HADOOP_PREFIX/sbin/mr-jobhistory-daemon.sh stop historyserver --config $HADOOP_CONF_DIR
10. 启动zookeeper
(1) 在所有机器上启动zookeeper
${ZOOKEEPER_HOME}/bin/zkServer.sh start
(2) 在各台机器上确认启动状态
${ZOOKEEPER_HOME}/bin/zkServer.sh status JMX enabled by default Using config: /hbase/zookeeper/bin/../conf/zoo.cfg Mode: leader
其中Mode:leader应该只有1个,其他的都是Mode: follower
11. 启动hbase
(1) 在hbase-0上启动hbase。按照文档中的描述,会按照ZooKeeper、Master、RegionServers、Backup masters的顺序启动。
$HBASE_HOME/bin/start-hbase.sh
(2) 在各个结点上执行 jps指令,确认启动状况
hbase-0:
$ jps 14761 NameNode 15644 Bootstrap 10145 QuorumPeerMain 21312 HMaster 24155 Jps 16377 Bootstrap
hbase-r:
$ jps 14229 ResourceManager 19301 Bootstrap 1119 Bootstrap 15188 JobHistoryServer 20920 Jps 10831 QuorumPeerMain
hbase-1:
$ jps 9015 HRegionServer 4402 DataNode 10906 Bootstrap 1145 QuorumPeerMain 15282 Bootstrap 10763 Jps
10876 NodeManager
hbase-2:
$ jps 17856 HRegionServer 13396 DataNode 17399 QuorumPeerMain 18258 Jps
28873 NodeManager
hbase-3:
$ jps 5660 Jps 3825 HRegionServer 24410 Bootstrap 5509 NodeManager 31687 DataNode 28529 QuorumPeerMain 9915 Bootstrap
可以看到,
hadoop:1个NameNode, 3个DataNode,3个NodeManager,1个ResourceManager, 1个JobHistoryServer
hbase:1个HMaster,3个RegionServer,
5个ZooKeeper,
全部启动完成了。
(2) 停止hbase
$HBASE_PREFIX/bin/stop-hbase.sh
12. 一些基本的测试
(1) Snappy压缩测试
$ $HBASE_HOME/bin/hbase shell > create ‘test1‘, { NAME => ‘cf1‘, COMPRESSION => ‘SNAPPY‘ } > put ‘test1‘, ‘row1‘, ‘cf1:a‘, ‘value1‘ > scan ‘test1‘ ROW COLUMN+CELL row1 column=cf1:a, timestamp=1414480111169, value=value1 1 row(s) in 0.0370 seconds
(2) 去hadoop看刚才创建的记录
$HADOOP_PREFIX/bin/hdfs dfs -ls /hbase/data/default/test1/
drwxr-xr-x - admin supergroup 0 2014-10-28 15:07 /hbase/data/default/test1/.tabledesc
drwxr-xr-x - admin supergroup 0 2014-10-28 15:07 /hbase/data/default/test1/.tmp
drwxr-xr-x - admin supergroup 0 2014-10-28 15:07 /hbase/data/default/test1/003d38c6f213f8c589eea5065785ce57
(3) 浏览器访问hbase-0:50070/,通过管理界面可以看到Live Nodes: 3
(4) 浏览器访问hbase-0:16010/,通过管理界面可以看到Region Servers 一共3台: hbase-1, hbase-2, hbase-3全部运行中。
-------------------------------------- 结束 -----------------------------------------
此次部署过程遇到了各种各样的错误,通过查看启动日志,搜索其他人的博文,最终成功安装上去了。希望本文能为后来者省点时间,也为下次自己再次部署的时候作为参考。
hbase centOS生产环境配置笔记 (1 NameNode, 1 ResourceManager, 3 DataNode)
标签:des style blog http io color os ar 使用
原文地址:http://www.cnblogs.com/got-my-way/p/4044075.html