标签:判断 方向 stream 一个 line while string src 左右
本文并不是入门文章,供有高中数学基础的阅读
主要写一些重要的点和注意事项吧
这个可以判断它们的夹角
几何意义:两向量由平行四边形法则围成的面积
叉乘满足的基本的性质如下:
\(\vec{a}×\vec{b}\) 的正负可以理解为 \(\vec{a}\)转到\(\vec{b}\)的逆时针形成的角,\(\leq \pi\)为正,否则为负
可以判断一些东西(凸包),求距离
\(S_{ABCDEF}=\frac{\overrightarrow{OA}\times \overrightarrow{OB}+\overrightarrow{OB}\times \overrightarrow{OC}+\dots +\overrightarrow{OF}\times \overrightarrow{OA}}{2}\)
用最少的周长覆盖所有点的多边形
性质:一定没有凹陷(可以用叉积判了)
叉积坐标公式的证明:
设
\[
T_1=\sqrt{x_1^2+y_1^2},T_2=\sqrt{x_2^2+y_2^2}
\]
则
\[
S=T_1*T_2*\sin\theta=\sin\alpha-\beta=\sin\alpha\cos\beta-\cos\alpha\sin\beta
\]
\[ =(\frac{y_2}{T_2}*\frac{x_1}{T_1}-\frac{x_2}{T_2}*\frac{y_1}{T_1})*T_1*T_2 \]
\[ =x_1*y_2-y_1*x_2 \]
具体方法是先求下凸壳然后再求上凸壳,注意一号点要进去两次比较最后一个点和第一个点,来判断是否弹出最后加进去的点
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
struct point{
double x,y;
double operator * (point b){
return x*b.y-y*b.x;
}
point operator - (point b){
point re;re.x=x-b.x,re.y=y-b.y;return re;
}
point operator + (point b){
point re;re.x=x+b.x,re.y=y+b.y;return re;
}
double dis(){
return sqrt(x*x+y*y);
}
};
const int N = 10021;
point p[N],h[N];
int cmp(point a,point b){
return a.x==b.x?a.y<b.y:a.x<b.x;
}
int n;
int stk[N],tp=0,used[N];
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%lf%lf",&p[i].x,&p[i].y);
}
sort(p+1,p+n+1,cmp);
stk[++tp]=1;
for(int i=2;i<=n;i++){
while( tp>1 && (p[stk[tp]]-p[stk[tp-1]])*(p[i]-p[stk[tp]]) <=0 ) used[stk[tp--]]=0;//小于等于为去除凸包边上的点
used[i]=1;
stk[++tp]=i;
}//下凸壳
int ntp=tp;
for(int i=n-1;i>=1;i--){
if(!used[i]){
while(tp>ntp&&(p[stk[tp]]-p[stk[tp-1]])*(p[i]-p[stk[tp]])<=0){
used[stk[tp--]]=0;
}
used[i]=1;
stk[++tp]=i;
}
}//上凸壳
for(int i=1;i<=tp;i++){
h[i]=p[stk[i]];
}//tp和1是同一点
double ans=0;
for(int i=2;i<=tp;i++){
ans+=(h[i]-h[i-1]).dis();
}
printf("%.2f",ans);
return 0;
}
考虑成 点+向量之差等于要求的点
向量之差也等于绕中心旋转的向量的差,三角恒等变换算一算就行
就先这么多吧。。。
明天目标:旋转卡壳+半平面交
标签:判断 方向 stream 一个 line while string src 左右
原文地址:https://www.cnblogs.com/lcyfrog/p/11688478.html