码迷,mamicode.com
首页 > 其他好文 > 详细

图像平滑处理(滤波处理)

时间:2019-10-19 13:01:31      阅读:178      评论:0      收藏:0      [点我收藏+]

标签:ssi   code   bsp   als   超过   box   两种   pre   范围   

原图片读入后如下所示,会有很多噪音点

技术图片

 

 这时就要用到滤波处理来处理这些噪音点,有以下几种方式:

1、均值滤波

技术图片

 

 对于一个像素点,可以在它周围画一个卷积盒子,用盒子中的均值来代替这个像素点,计算公式为(121+75+...+235)/9

也就相当于一个3×3的卷积矩阵,每个位置的值都为1,该卷积矩阵与像素点矩阵做乘法,然后除以矩阵的大小

经过均值滤波处理后,结果如下:

1 #均值滤波
2 blur=cv2.blur(img,(3,3))

技术图片

 

可以看到噪音点比原始图像少了很多,但还是有一些噪音点

 

2、方框滤波

方框滤波有两种情况,如果做了归一化处理,就和均值滤波一样

1 #方框滤波(归一化即和均值滤波一样)
2 box1=cv2.boxFilter(img,-1,(3,3),normalize=True)

技术图片

 

 如果不做归一化处理,就是将卷积盒子中的所有数值加起来,不取平均值,即121+75+...+235

因为像素点的取值范围是0~255,如果加起来超过这个范围,显示出来就是一个白点

1 #方框滤波(不做归一化处理)
2 box2=cv2.boxFilter(img,-1,(3,3),normalize=False)

 

技术图片

 

 

3、高斯滤波

在卷积盒子中,有些像素点离中心像素点的距离近一些,那么它和中心像素点的关系更近一些,求平均值的时候权重应该更大一些

例如3×3的盒子中,上下左右就离中心点的距离短一些,四个角距离就稍长些

高斯滤波就是在求均值的基础上给各个点都加上了权重

1 #高斯滤波
2 gaussian=cv2.GaussianBlur(img,(5,5),1)

技术图片

 

 

4、中值滤波

就是将卷积盒子中的像素点按顺序排成一列,取它的中间数,即中位数

24,75,78,104,113,121,154,204,235,中位数是113,就用113来代替中心像素点的值

1 #中值滤波
2 median=cv2.medianBlur(img,5)

技术图片

 

 

可以看到,利用中值滤波处理后,噪音点基本没有了

图像平滑处理(滤波处理)

标签:ssi   code   bsp   als   超过   box   两种   pre   范围   

原文地址:https://www.cnblogs.com/program-ai-cv-ml-se-fighting/p/11701528.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!