码迷,mamicode.com
首页 > 其他好文 > 详细

Pandas案例--人口密度分析

时间:2019-10-20 20:19:13      阅读:258      评论:0      收藏:0      [点我收藏+]

标签:als   sas   query   div   out   dataframe   批量   csv   dex   

  • 需求:
    • 导入文件,查看原始数据
    • 将人口数据和各州简称数据进行合并
    • 将合并的数据中重复的abbreviation列进行删除
    • 查看存在缺失数据的列
    • 找到有哪些state/region使得state的值为NaN,进行去重操作
    • 为找到的这些state/region的state项补上正确的值,从而去除掉state这一列的所有NaN
    • 合并各州面积数据areas
    • 我们会发现area(sq.mi)这一列有缺失数据,找出是哪些行
    • 去除含有缺失数据的行
    • 找出2010年的全民人口数据
    • 计算各州的人口密度
    • 排序,并找出人口密度最高的五个州 df.sort_values()
import numpy as np
from pandas import DataFrame,Series
import pandas as pd
abb = pd.read_csv('./data/state-abbrevs.csv')
abb.head(2)
state abbreviation
0 Alabama AL
1 Alaska AK
pop = pd.read_csv('./data/state-population.csv')
pop.head(2)
state/region ages year population
0 AL under18 2012 1117489.0
1 AL total 2012 4817528.0
area = pd.read_csv('./data/state-areas.csv')
area.head(2)
state area (sq. mi)
0 Alabama 52423
1 Alaska 656425
# 将人口数据和各州简称数据进行合并
abb_pop = pd.merge(abb,pop,left_on='abbreviation',right_on='state/region',how='outer')
abb_pop.head(2)
state abbreviation state/region ages year population
0 Alabama AL AL under18 2012 1117489.0
1 Alabama AL AL total 2012 4817528.0
# 将合并的数据中重复的abbreviation列进行删除
abb_pop.drop(labels='abbreviation',axis=1,inplace=True)
abb_pop.head(2)
state state/region ages year population
0 Alabama AL under18 2012 1117489.0
1 Alabama AL total 2012 4817528.0
# 查看存在缺失数据的列
abb_pop.isnull().any(axis=0)
state            True
state/region    False
ages            False
year            False
population       True
dtype: bool
# 找到有哪些state/region使得state的值为NaN,进行去重操作
# 1.state列中哪些值为空
abb_pop['state'].isnull()
0       False
1       False
2       False
        ...  
2542     True
2543     True
Name: state, Length: 2544, dtype: bool
# 2.可以将step1中空对应的行数据取出(state中的空值对应的行数据)
abb_pop.loc[abb_pop['state'].isnull()]
state state/region ages year population
2448 NaN PR under18 1990 NaN
... ... ... ... ... ...
2543 NaN USA total 2012 313873685.0

96 rows × 5 columns

# 3.将对应的行数据中指定的简称列取出
abb_pop.loc[abb_pop['state'].isnull()]['state/region'].unique()
array(['PR', 'USA'], dtype=object)
# 为找到的这些state/region的state项补上正确的值,从而去除掉state这一列的所有NaN
# 1.先将USA对应的state列中的空值定位到
abb_pop['state/region'] == 'USA'
0       False
1       False
2       False
3       False
        ...  
2541     True
2542     True
2543     True
Name: state/region, Length: 2544, dtype: bool
# 2,将布尔值作为原数据的行索引,取出USA简称对应的行数据
abb_pop.loc[abb_pop['state/region'] == 'USA']
state state/region ages year population
2496 NaN USA under18 1990 64218512.0
... ... ... ... ... ...
2542 NaN USA under18 2012 73708179.0
2543 NaN USA total 2012 313873685.0
# 3.获取符合要求行数据的行索引
indexs = abb_pop.loc[abb_pop['state/region'] == 'USA'].index
# 4.将indexs这些行中的state列的值批量赋值成united states
abb_pop.loc[indexs,'state'] = 'United Status'
# 将PR对应的state列中的空批量赋值成 PUERTO RICO
abb_pop['state/region'] == 'PR'
abb_pop.loc[abb_pop['state/region'] == 'PR']
indexs = abb_pop.loc[abb_pop['state/region'] == 'PR'].index
abb_pop.loc[indexs,'state'] = 'PUERTO RICO'
# 合并各州面积数据areas
abb_pop_area = pd.merge(abb_pop,area,how='outer')
abb_pop_area.head(3)
state state/region ages year population area (sq. mi)
0 Alabama AL under18 2012.0 1117489.0 52423.0
1 Alabama AL total 2012.0 4817528.0 52423.0
2 Alabama AL under18 2010.0 1130966.0 52423.0
# 我们会发现area(sq.mi)这一列有缺失数据,找出是哪些行
abb_pop_area['area (sq. mi)'].isnull()
# 将空值对应的行数据取出
indexs = abb_pop_area.loc[abb_pop_area['area (sq. mi)'].isnull()].index
indexs
Int64Index([2448, 2449, 2450, 2451, 2452, 2453, 2454, 2455, 2456, 2457, 2458,
            2459, 2460, 2461, 2462, 2463, 2464, 2465, 2466, 2467, 2468, 2469,
            2470, 2471, 2472, 2473, 2474, 2475, 2476, 2477, 2478, 2479, 2480,
            2481, 2482, 2483, 2484, 2485, 2486, 2487, 2488, 2489, 2490, 2491,
            2492, 2493, 2494, 2495, 2496, 2497, 2498, 2499, 2500, 2501, 2502,
            2503, 2504, 2505, 2506, 2507, 2508, 2509, 2510, 2511, 2512, 2513,
            2514, 2515, 2516, 2517, 2518, 2519, 2520, 2521, 2522, 2523, 2524,
            2525, 2526, 2527, 2528, 2529, 2530, 2531, 2532, 2533, 2534, 2535,
            2536, 2537, 2538, 2539, 2540, 2541, 2542, 2543],
           dtype='int64')
# 去除含有缺失数据的行
abb_pop_area.drop(labels=indexs,axis=0,inplace=True)
# 找出2010年的全民人口数据    条件查询
abb_pop_area.query('year == 2010 & ages == "total"')
... ...
state state/region ages year population area (sq. mi)
3 Alabama AL total 2010.0 4785570.0 52423.0
91 Alaska AK total 2010.0 713868.0 656425.0
101 Arizona AZ total 2010.0 6408790.0 114006.0
189 Arkansas AR total 2010.0 2922280.0 53182.0
197 California CA total 2010.0 37333601.0 163707.0
2405 Wyoming WY total 2010.0 564222.0 97818.0
# 计算各州的人口密度
abb_pop_area['midu'] = abb_pop_area['population'] / abb_pop_area['area (sq. mi)']
abb_pop_area.head(2)
state state/region ages year population area (sq. mi) midu
0 Alabama AL under18 2012.0 1117489.0 52423.0 21.316769
1 Alabama AL total 2012.0 4817528.0 52423.0 91.897221
# 排序,并找出人口密度最高的五个州   df.sort_values()
abb_pop_area.sort_values(by='midu',axis=0,ascending=False).head(5)
state state/region ages year population area (sq. mi) midu
391 District of Columbia DC total 2013.0 646449.0 68.0 9506.602941
385 District of Columbia DC total 2012.0 633427.0 68.0 9315.102941
387 District of Columbia DC total 2011.0 619624.0 68.0 9112.117647
431 District of Columbia DC total 1990.0 605321.0 68.0 8901.779412
389 District of Columbia DC total 2010.0 605125.0 68.0 8898.897059
abb_pop_area.groupby(by='state')['area (sq. mi)'].max().sort_values(ascending=False).head(5)
state
Alaska        656425.0
Texas         268601.0
California    163707.0
Montana       147046.0
New Mexico    121593.0
Name: area (sq. mi), dtype: float64

Pandas案例--人口密度分析

标签:als   sas   query   div   out   dataframe   批量   csv   dex   

原文地址:https://www.cnblogs.com/zyyhxbs/p/11708544.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!