标签:tin MTA identify cut actual iss log 通过 情况
spark 资源调度包 Stage(阶段) 类解析
类注释:
/**
* A stage is a set of parallel tasks all computing the same function that need to run as part
* of a Spark job, where all the tasks have the same shuffle dependencies.
* 一个阶段是所有计算相同功能的并行任务集合, 作为spark作业的一部分, 这些任务都有相同的 shuffle 依赖
*
* Each DAG of tasks run by the scheduler is split up into stages at the boundaries where
* shuffle occurs, and then the DAGScheduler runs these stages in topological order.
* 每个由调度器运行的任务的有向无环图在shuffle发生的分界处分化成不同的阶段, 并且这些有向无环图的调度器
* 将以拓扑排序来运行这些 不同阶段的任务
*
* Each Stage can either be a shuffle map stage, in which case its tasks' results are input for
* other stage(s), or a result stage, in which case its tasks directly compute a Spark action
* (e.g. count(), save(), etc) by running a function on an RDD.
* 每个阶段都可以是一个 shuffle 匹配阶段, 该任务的结果可以被其他阶段作为导入, 也可以是 一个结果阶段,
* 它的任务 通过 在RDD上运行 一个公式 来直接计算 一个 spark 行为(计数, 保存等...)
*
* For shuffle map stages, we also track the nodes that each output partition is on.
* 对于 shuffle 匹配阶段, 我们会追踪 每个输出的分区的节点
*
* Each Stage also has a firstJobId, identifying the job that first submitted the stage. When
* FIFO scheduling is used, this allows Stages from earlier jobs to be computed first or
* recovered faster on failure.
* 每个阶段都有一个 首任务Id, 用于辨识第一个提交到该阶段的 任务。 当 先进先出 调度策略被使用时, 这会允
* 许 更早 的 作业 的阶段先被计算, 或者 在失败之后更早的恢复。
*
* Finally, a single stage can be re-executed in multiple attempts due to fault recovery. In
* that case, the Stage object will track multiple StageInfo objects to pass to listeners or * the web UI.
* 最终, 由于 容错恢复机制, 单个阶段可以在多次尝试运行中 被重新执行。在这种情况下, 该阶段对象会追踪 许
* 多 阶段信息对象 并 将信息传递给监听者 或者 web UI 界面
*
* The latest one will be accessible through latestInfo.
* 最新的阶段可以通过 最新的信息获取
*
* @param id Unique stage ID id: 唯一的阶段Id
* @param rdd RDD that this stage runs on: for a shuffle map stage, it's the RDD we run map
* tasks on, while for a result stage, it's the target RDD that we ran an action on
* rdd:该 阶段 所运行在的 RDD:对于shuffle匹配阶段, 该RDD是我们 运行匹配任务 所在的RDD, 但对于结果阶
* 段,该RDD是我们运行 行为所在的RDD
* @param numTasks Total number of tasks in stage; 当前阶段的任务数量
* result stages in particular may not need to compute all partitions, e.g. for first(),
* lookup(), and take().
* 结果阶段 实际上不一定需要计算所有分区, 比如使用 first(), lookup() 和 take() 等算子
* @param parents List of stages that this stage depends on (through shuffle dependencies).
* parent: 该阶段 所依赖(shuffle依赖) 的 阶段列表
* @param firstJobId ID of the first job this stage was part of, for FIFO scheduling.
* firstJobId: 该阶段的第一个任务Id, 用于先进先出调度
* @param callSite Location in the user program associated with this stage: either where the
* target RDD was created, for a shuffle map stage, or where the action for a result stage was
* called.
* callSite: 与该阶段相关的用户程序的位置: 对于 shuffle 匹配阶段 是 目标 RDD创建的位置, 对于 结果
* 阶段, 是 行为被调用的位置 (调用位点)
*/
代码:
private[scheduler] abstract class Stage(
val id: Int,
val rdd: RDD[_],
val numTasks: Int,
val parents: List[Stage],
val firstJobId: Int,
val callSite: CallSite)
extends Logging {
// 根据数组长度确定分区数
val numPartitions = rdd.partitions.length
/** Set of jobs that this stage belongs to. 该阶段 的任务Id集合*/
val jobIds = new HashSet[Int]
/** The ID to use for the next new attempt for this stage.
* 该阶段的下一次新尝试的 Id
*/
private var nextAttemptId: Int = 0
// 短型的调用位点
val name: String = callSite.shortForm
// 长型的调用位点
val details: String = callSite.longForm
/**
* Pointer to the [[StageInfo]] object for the most recent attempt.
* 指向阶段信息对象的指针, 用于获取最近最多的尝试
* This needs to be initialized here, before any attempts have actually been created, because
* the DAGScheduler uses this StageInfo to tell SparkListeners when a job starts (which
* happens before any stage attempts have been created).
* 在任何尝试被实际创建之前, 它需要被初始化, 因为 有向无环图的调度器 使用了该阶段信息来告诉spark的监
* 听者有任务启动了(这发生在任何阶段的尝试被发生之前)
*/
private var _latestInfo: StageInfo = StageInfo.fromStage(this, nextAttemptId)
/**
* Set of stage attempt IDs that have failed with a FetchFailure.
* 拉取失败的的阶段尝试Id集
* We keep track of these failures in order to avoid endless retries if a stage keeps failing
* with a FetchFailure.
* 我们追踪这些失败时为了防止 一个阶段一直发生拉取失败后 无尽的重试
* We keep track of each attempt ID that has failed to avoid recording duplicate failures if
* multiple tasks from the same stage attempt fail (SPARK-5945).
* 我们追踪失败的每次尝试的Id以防止 如果许多任务在同一个阶段的尝试中失败 会导致 记录重复的失败
*/
val fetchFailedAttemptIds = new HashSet[Int]
// 清除失败Id
private[scheduler] def clearFailures() : Unit = {
fetchFailedAttemptIds.clear()
}
/** Creates a new attempt for this stage by creating a new StageInfo with a new attempt ID.
* 通过创建一个新的附带新的尝试Id的状态信息 来为当前阶段创建一个新的尝试
*/
def makeNewStageAttempt(
// 需要计算的分区
numPartitionsToCompute: Int,
// 本地优先的任务
taskLocalityPreferences: Seq[Seq[TaskLocation]] = Seq.empty): Unit = {
// TaskMetrics是内部累加器的一个包装类
val metrics = new TaskMetrics
metrics.register(rdd.sparkContext)
// 获取最近的阶段信息
_latestInfo = StageInfo.fromStage(
this, nextAttemptId, Some(numPartitionsToCompute), metrics, taskLocalityPreferences)
nextAttemptId += 1
}
/** Returns the StageInfo for the most recent attempt for this stage.
* 返回最近最多尝试的 当前阶段的 阶段信息
*/
def latestInfo: StageInfo = _latestInfo
override final def hashCode(): Int = id
override final def equals(other: Any): Boolean = other match {
case stage: Stage => stage != null && stage.id == id
case _ => false
}
/** Returns the sequence of partition ids that are missing (i.e. needs to be computed).
* 返回缺失的分区 id 的序列
*/
def findMissingPartitions(): Seq[Int]
}
标签:tin MTA identify cut actual iss log 通过 情况
原文地址:https://www.cnblogs.com/ronnieyuan/p/11723208.html