码迷,mamicode.com
首页 > 其他好文 > 详细

pytorch之 bulid_nn_with_2_method

时间:2019-10-26 15:39:54      阅读:87      评论:0      收藏:0      [点我收藏+]

标签:self   ret   net   linear   output   out   win   you   put   

 1 import torch
 2 import torch.nn.functional as F
 3 
 4 
 5 # replace following class code with an easy sequential network
 6 class Net(torch.nn.Module):
 7     def __init__(self, n_feature, n_hidden, n_output):
 8         super(Net, self).__init__()
 9         self.hidden = torch.nn.Linear(n_feature, n_hidden)   # hidden layer
10         self.predict = torch.nn.Linear(n_hidden, n_output)   # output layer
11 
12     def forward(self, x):
13         x = F.relu(self.hidden(x))      # activation function for hidden layer
14         x = self.predict(x)             # linear output
15         return x
16 
17 net1 = Net(1, 10, 1)
18 
19 # easy and fast way to build your network
20 net2 = torch.nn.Sequential(
21     torch.nn.Linear(1, 10),
22     torch.nn.ReLU(),
23     torch.nn.Linear(10, 1)
24 )
25 
26 
27 print(net1)     # net1 architecture
28 """
29 Net (
30   (hidden): Linear (1 -> 10)
31   (predict): Linear (10 -> 1)
32 )
33 """
34 
35 print(net2)     # net2 architecture
36 """
37 Sequential (
38   (0): Linear (1 -> 10)
39   (1): ReLU ()
40   (2): Linear (10 -> 1)
41 )
42 """

 

pytorch之 bulid_nn_with_2_method

标签:self   ret   net   linear   output   out   win   you   put   

原文地址:https://www.cnblogs.com/dhName/p/11742957.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!