码迷,mamicode.com
首页 > 其他好文 > 详细

题解 UVa10892

时间:2019-10-26 18:48:00      阅读:49      评论:0      收藏:0      [点我收藏+]

标签:for   scan   ==   its   printf   while   gcd   int   line   

题目大意 多组数据,每组数据给定一个整数 \(n\),求满足 \(LCM(x,y)=n\) 的不同无序整数对 \((x,y)\) 的数目。

分析 若有 \(LCM(x,y)=n\),则有 \(GCD(n/x,n/y)=1\),问题便转化为了求 \(n\) 的所有因数中互质的数量,枚举即可。

#include<bits/stdc++.h>
using namespace std;

int n, ans;
int tot, fac[40000];

int gcd(int x, int y)
{
    if(!y) return x;
    return gcd(y, x % y);
}

int main()
{
    while(~scanf("%d", &n) && n) {
        tot = ans = 0;
        
        for(int i = 1; i * i <= n; ++i) {
            if(!(n % i)) {
                fac[++tot] = i;
                if(i * i != n) fac[++tot] = n / i;
            }
        }
        
        for(int i = 1; i <= tot; ++i)
            for(int j = i; j <= tot; ++j)
                ans += gcd(fac[i], fac[j]) == 1;
        
        printf("%d %d\n", n, ans);
    }
}

题解 UVa10892

标签:for   scan   ==   its   printf   while   gcd   int   line   

原文地址:https://www.cnblogs.com/whx1003/p/11744137.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!