标签:分块 printf add with include clu 区间 col ++
POJ3468 A Simple Problem with Integers
1 #include <iostream> 2 #include <cstdio> 3 #include <algorithm> 4 #include <cmath> 5 using namespace std; 6 typedef long long ll; 7 const int maxn = 1e5+5; 8 int L[maxn], R[maxn]; // 每个区间的范围 9 int pos[maxn]; // 记录所属块 10 ll sum[maxn], a[maxn]; 11 ll add[maxn]; // lazy标记 12 13 void change(int l, int r, int v) { 14 int p = pos[l], q = pos[r]; 15 if (p == q) { // 如果属于同一块 16 for (int i = l; i <= r; i++) a[i] += v; 17 sum[p] += (ll)(r-l+1)*v; 18 } 19 else { 20 for (int i = p+1; i <= q-1; i++) add[i] += v; // p和q中间的块的add 21 for (int i = l; i <= R[p]; i++) a[i] += v; 22 sum[p] += (ll)(R[p]-l+1)*v; 23 for (int i = L[q]; i <= r; i++) a[i] += v; 24 sum[q] += (ll)(r-L[q]+1)*v; 25 } 26 } 27 ll query(int l, int r) { 28 int p = pos[l], q = pos[r]; 29 ll ans = 0; 30 if (p == q) { 31 for (int i = l; i <= r; i++) ans += a[i]; 32 ans += add[p]*(r-l+1); 33 } 34 else { 35 for (int i = p+1; i <= q-1; i++) ans += sum[i] + add[i]*(R[i]-L[i]+1); 36 for (int i = l; i <= R[p]; i++) ans += a[i]; 37 ans += add[p]*(R[p]-l+1); 38 for (int i = L[q]; i <= r; i++) ans += a[i]; 39 ans += add[q]*(r-L[q]+1); 40 } 41 return ans; 42 } 43 44 int main() { 45 int n, q; scanf("%d%d",&n,&q); 46 for (int i = 1; i <= n; i++) scanf("%lld",&a[i]); 47 int t = sqrt(n); 48 for (int i = 1; i <= t; i++) { 49 L[i] = (i-1)*t + 1; 50 R[i] = i*t; 51 } 52 if (R[t] < n) t++, L[t] = R[t-1]+1, R[t] = n; 53 for (int i = 1; i <= t; i++) { 54 for (int j = L[i]; j <= R[i]; j++) { 55 pos[j] = i; 56 sum[i] += a[j]; 57 } 58 } 59 while (q--) { 60 char cmd[10]; 61 int l, r, v; 62 scanf("%s",cmd); 63 if (cmd[0] == ‘Q‘) { 64 scanf("%d%d",&l,&r); 65 printf("%lld\n",query(l,r)); 66 } 67 else { 68 scanf("%d%d%d",&l,&r,&v); 69 change(l,r,v); 70 } 71 } 72 return 0; 73 }
POJ3468 A Simple Problem with Integers 分块
标签:分块 printf add with include clu 区间 col ++
原文地址:https://www.cnblogs.com/wstong/p/11745731.html