标签:单例 推荐 装饰器模式 分类 dem 排序 其他 通过 简单
开闭原则就是说对扩展开放,对修改关闭。在程序需要进行拓展的时候,不能去修改原有的代码,实现一个热插拔的效果。所以一句话概括就是:为了使程序的扩展性好,易于维护和升级。想要达到这样的效果,我们需要使用接口和抽象类,
里氏代换原则(Liskov Substitution Principle LSP)面向对象设计的基本原则之一。 里氏代换原则中说,任何基类可以出现的地方,子类一定可以出现。 LSP是继承复用的基石,只有当衍生类可以替换掉基类,软件单位的功能不受到影响时,基类才能真正被复用,而衍生类也能够在基类的基础上增加新的行为。里氏代换原则是对“开-闭”原则的补充。实现“开-闭”原则的关键步骤就是抽象化。而基类与子类的继承关系就是抽象化的具体实现,所以里氏代换原则是对实现抽象化的具体步骤的规范。—— From Baidu 百科
这个是开闭原则的基础,具体内容:针对接口编程,依赖于抽象而不依赖于具体。
这个原则的意思是:使用多个隔离的接口,比使用单个接口要好。还是一个降低类之间的耦合度的意思,从这儿我们看出,其实设计模式就是一个软件的设计思想,从大型软件架构出发,为了升级和维护方便。所以上文中多次出现:降低依赖,降低耦合。
为什么叫最少知道原则,就是说:一个实体应当尽量少的与其他实体之间发生相互作用,使得系统功能模块相对独立。
原则是尽量使用合成/聚合的方式,而不是使用继承。
保证一个类只有一个实例,并且提供一个访问该全局访问点
## 2、单例应用场景
优点:
缺点:
//饿汉式
public class SingletonDemo01 {
// 类初始化时,会立即加载该对象,线程天生安全,调用效率高
private static SingletonDemo01 singletonDemo01 = new SingletonDemo01();
private SingletonDemo01() {
System.out.println("SingletonDemo01初始化");
}
public static SingletonDemo01 getInstance() {
System.out.println("getInstance");
return singletonDemo01;
}
public static void main(String[] args) {
SingletonDemo01 s1 = SingletonDemo01.getInstance();
SingletonDemo01 s2 = SingletonDemo01.getInstance();
System.out.println(s1 == s2);
}
}
//懒汉式
public class SingletonDemo02 {
//类初始化时,不会初始化该对象,真正需要使用的时候才会创建该对象。
private static SingletonDemo02 singletonDemo02;
private SingletonDemo02() {
}
public synchronized static SingletonDemo02 getInstance() {
if (singletonDemo02 == null) {
singletonDemo02 = new SingletonDemo02();
}
return singletonDemo02;
}
public static void main(String[] args) {
SingletonDemo02 s1 = SingletonDemo02.getInstance();
SingletonDemo02 s2 = SingletonDemo02.getInstance();
System.out.println(s1 == s2);
}
}
// 静态内部类方式
public class SingletonDemo03 {
private SingletonDemo03() {
System.out.println("初始化..");
}
public static class SingletonClassInstance {
private static final SingletonDemo03 singletonDemo03 = new SingletonDemo03();
}
// 方法没有同步
public static SingletonDemo03 getInstance() {
System.out.println("getInstance");
return SingletonClassInstance.singletonDemo03;
}
public static void main(String[] args) {
SingletonDemo03 s1 = SingletonDemo03.getInstance();
SingletonDemo03 s2 = SingletonDemo03.getInstance();
System.out.println(s1 == s2);
}
}
优势:兼顾了懒汉模式的内存优化(使用时才初始化)以及饿汉模式的安全性(不会被反射入侵)。
劣势:需要两个类去做到这一点,虽然不会创建静态内部类的对象,但是其 Class 对象还是会被创建,而且是属于永久带的对象。
枚举本身是单例的,一般用于项目中定义常量。
enum UserEnum {
HTTP_200(200, "请求成功"),HTTP_500(500,"请求失败");
private Integer code;
private String name;
UserEnum(Integer code, String name) {
this.code = code;
this.name = name;
}
public Integer getCode() {
return code;
}
public void setCode(Integer code) {
this.code = code;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
}
public class TestEnum {
public static void main(String[] args) {
System.out.println(UserEnum.HTTP_500.getCode());
}
}
/使用枚举实现单例模式 优点:实现简单、枚举本身就是单例,由jvm从根本上提供保障!避免通过反射和反序列化的漏洞 缺点没有延迟加载
public class User {
public static User getInstance() {
return SingletonDemo04.INSTANCE.getInstance();
}
private static enum SingletonDemo04 {
INSTANCE;
// 枚举元素为单例
private User user;
private SingletonDemo04() {
System.out.println("SingletonDemo04");
user = new User();
}
public User getInstance() {
return user;
}
}
public static void main(String[] args) {
User u1 = User.getInstance();
User u2 = User.getInstance();
System.out.println(u1 == u2);
}
}
如果不需要延迟加载单例,可以使用枚举或者饿汉式,相对来说枚举性能好于饿汉式。
如果需要延迟加载,可以使用静态内部类或者懒汉式,相对来说静态内部类好于懒汉式。
public class SingletonDemo04 {
private SingletonDemo04 singletonDemo04;
private SingletonDemo04() {
}
public SingletonDemo04 getInstance() {
if (singletonDemo04 == null) {
synchronized (this) {
if (singletonDemo04 == null) {
singletonDemo04 = new SingletonDemo04();
}
}
}
return singletonDemo04;
}
}
在构造函数中,只能允许初始化化一次即可。
private static boolean flag = false;
private SingletonDemo04() {
if (flag == false) {
flag = !flag;
} else {
throw new RuntimeException("单例模式被侵犯!");
}
}
public static void main(String[] args) {
}
个人博客 蜗牛
标签:单例 推荐 装饰器模式 分类 dem 排序 其他 通过 简单
原文地址:https://www.cnblogs.com/codeobj/p/11752899.html